Academia.eduAcademia.edu

Outline

Regression with non compactly supported bases

2018, HAL (Le Centre pour la Communication Scientifique Directe)

Abstract

This paper is about nonparametric regression function estimation. Our estimator is a one step projection estimator obtained by least-squares contrast minimization. The specificity of our work is to consider a new model selection procedure including a cutoff for the underlying matrix inversion, and to provide theoretical risk bounds that apply to non compactly supported bases, a case which was specifically excluded of most previous results. Upper and lower bounds for resulting rates are provided.

Key takeaways
sparkles

AI

  1. The paper presents a new estimator using least-squares contrast for nonparametric regression with non compact bases.
  2. It introduces a model selection procedure that incorporates a random cutoff for matrix inversion.
  3. Theoretical risk bounds are derived, showing upper and lower rates for non compactly supported bases like Laguerre and Hermite.
  4. The estimator achieves a bias-variance tradeoff, automatically optimizing performance without requiring compact support assumptions.
  5. Numerical experiments demonstrate the effectiveness of the proposed method across various design distributions.

References (20)

  1. References [Abramowitz and Stegun, 1964] Abramowitz, M. and Stegun, I. A. (1964). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, ninth dover print- ing, tenth gpo printing edition. [Aksey and Wainger, 1965] Askey, R. and Wainger, S. (1965) Mean convergence of expansions in Laguerre and Hermite series. Amer. J. Math. 87, 695-708.
  2. Baraud, 2000] Baraud, Y. (2000) Model selection for regression on a fixed design. Probab. Theory Related Fields 117, 467-493.
  3. Baraud, 2002] Baraud, Y. (2002) Model selection for regression on a random design. ESAIM Probab. Statist. 6, 127-146.
  4. Barron et al., 1999] Barron, A., Birgé, L. and Massart, P. (1999) Risk bounds for model selection via penalization. Probab. Theory Related Fields 113, 301-413.
  5. Belomestny et al., 2016] Belomestny, D., Comte, F., and Genon-Catalot, V. (2016). Nonparametric La- guerre estimation in the multiplicative censoring model. Electron. J. Statist., 10(2):3114-3152.
  6. Belomestny et al., 2017] Belomestny, D., Comte, F., and Genon-Catalot, V. (2017). Sobolev-Hermite ver- sus Sobolev nonparametric density estimation on R The Annals of the Institute of Statistical Mathe- matics, to appear. [Birgé and Massart, 1998] Birgé, L. and Massart, P. (1998). Minimum contrast estimators on sieves: ex- ponential bounds and rates of convergence. Bernoulli 4, 329-375.
  7. Bouaziz et al., 2018] Bouaziz, O., Brunel, E. and Comte, F. (2018). Nonparametric survival function estimation for data subject to interval censoring case 2. Preprint hal-01766456.
  8. Brunel and Comte, 2009] Brunel, E. and Comte, F. (2009) Cumulative distribution function estimation under interval censoring case 1.Electron. J. Stat. 3 , 1-24.
  9. Cohen et al., 2013] Cohen, A., Davenport, M.A. and Leviatan, D. (2013). On the stability and acuracy of least squares approximations. Found. Comput. math. 13, 819-834.
  10. Comte and Genon-Catalot, 2015] Comte, F. and Genon-Catalot, V. (2015). Adaptive Laguerre density estimation for mixed Poisson models. Electron. J. Stat., 9, 1112-1148.
  11. Comte and Genon-Catalot, 2018] Comte, F. and Genon-Catalot, V. (2018). Laguerre and Hermite bases for inverse problems. Journal of the Korean Statistical Society, 47, 273-296. [deVore and Lorentz, 1993] DeVore, R.A. and Lorentz, G.G. (1993) Constructive approximation, Springer- Verlag, Berlin.
  12. Efromovich, 1999] Efromovich, S. (1999) Nonparametric curve estimation. Methods, theory, and applica- tions. Springer Series in Statistics. Springer-Verlag, New York.
  13. Klein and Rio, 2005] Klein, T. and Rio, E. (2005) Concentration around the mean for maxima of empirical processes. Ann. Probab. 33, no. 3, 1060-1077.
  14. Mabon, 2017] Mabon, G. (2017). Adaptive deconvolution on the nonnegative real line. Scandinavian Jour- nal of Statistics, 44:707-740.
  15. Nadaraya 1964] Nadaraya, E. A. (1964). On estimating regression. Theory Probab. Appl. 9, 141-142. [Plancade, 2011] Plancade, S. (2011) Model selection for hazard rate estimation in presence of censoring. Metrika 74, 313-347.
  16. Stewart and Sun, 1990] Stewart, G. W. and Sun, J.-G. (1990). Matrix perturbation theory. Boston etc.: Academic Press, Inc.
  17. Szegö, 1975] Szegö, G. (1975) Orthogonal polynomials. Fourth edition. American Mathematical Society, Colloquium Publications, Vol. XXIII. American mathematical Society, Providence, R.I. [Tropp, 2012] Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389-434.
  18. Tropp, 2015] Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Found. Trends Mach. Learn., 8(1-2):1-230.
  19. Tsybakov, 2009] Tsybakov, A. B. (2009) Introduction to nonparametric estimation. Springer Series in Statistics. Springer, New York.
  20. Watson, 1964] Watson, G.S. (1964) Smooth regression analysis. Sankhyā, Series A, 26, 359-372.