Academia.eduAcademia.edu

Outline

Hazard regression with noncompactly supported bases

2021, Canadian Journal of Statistics

https://doi.org/10.1002/CJS.11619

Abstract

In this paper, we consider the problem of nonparametric hazard rate estimation in presence of right-censored observations. We provide a generalized risk bound for a regression type nonparametric estimator of the hazard function of interest. Under adequate integrability conditions, our bound is a generalization to non necessarily compactly supported bases, of strategies which were specific to compact support of estimation. We show that it encompasses those previous compact-support results. We discuss the model selection method which comes out from the new terms of the risk bounds, and compare the performance of the new estimator to previous ones, when using a non compact Laguerre basis. A real data example is also presented.

References (26)

  1. Antoniadis, A., Grégoire, G. and Nason, G. (1999). Density and hazard rate estimation for right- censored data by using wavelet methods. J. R. Stat. Soc., Ser. B Stat. Methodol. 61, 63-84.
  2. Barbeito, I. and Cao, R. (2019). Smoothed bootstrap bandwidth selection for nonparametric hazard rate estimation. J. Stat. Comput. Simul. 89, 15-37.
  3. Bouezmarni, T., El Ghouch, A. and Mesfioui, M. (2011) Gamma kernel estimators for density and hazard rate of right-censored data. J. Probab. Stat. Art. ID 937574, 16 pp.
  4. Brunel, E. and Comte, F. (2005) Penalized contrast estimation of density and hazard rate with censored data. Sankhyā 67, 441-475.
  5. Cohen, A., Davenport, M.A. and Leviatan, D. (2013). On the stability and acuracy of least squares approximations. Found. Comput. math. 13, 819-834.
  6. A. Cohen, M.A. Davenport and D. Leviatan. Correction to: On the stability and accuracy of least squares approximations. Found. Comput. math. 19, 239-239, 2019.
  7. Comte, F. (2017) Nonparametric Estimation. Paris: Spartacus-Idh, second edition.
  8. Comte, F., Gaïffas, S. and Guilloux, A. (2011) Adaptive estimation of the conditional intensity of marker-dependent counting processes. Ann. Inst. Henri Poincaré Probab. Stat. 47, 1171-1196.
  9. Diehl, S. and Stute, W. (1988). Kernel density and hazard function estimation in the presence of censoring. J. Multivariate Anal. 25, 299-310.
  10. Döhler, S. and Rüschendorf, L. (2002). Adaptive estimation of hazard functions. Probab. Math. Statist. 22, no. 2, 355-379.
  11. Gàmiz, M. L., Mammen, E., Martínez Miranda, M. D., Nielsen, J. P (2016) Double one-sided cross- validation of local linear hazards. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78, 755-779.
  12. Huber, C. and MacGibbon, B. (2004). Lower bounds for estimating a hazard. Advances in survival analysis, 209-226, Handbook of Statist., 23 Elsevier, Amsterdam.-
  13. Klein, J. P., Moeschberger, M. L. (2003). Survival Analysis : Techniques for Censored and Truncated Data, Springer.
  14. Kooperberg, C., Stone, C.J. and Truong, Y.K. (1995). The L2 rate of convergence for hazard regres- sion. Scand. J. Statist. 22, 143-157.
  15. Lo, S.H., Mack, Y.P. and Wang, J.L. (1989). Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator. Probab. Theory Related Fields 80, no. 3, 461-473.
  16. Müller, H. G. and Wang, J. L. (1994) Hazard rate estimation under random censoring with varying kernels and bandwidths. Biometrics 50, 61-76.
  17. Patil, P. N. (1997). Nonparametric hazard rate estimation by orthogonal wavelet method. J. Statist. Plann. Inference 60, 153-168.
  18. Patil, P. N., Wells, M. T. and Marron, J. S. (1994). Kernel based estimation of ratio functions. J. Nonparametric Statist. 4, 203-209.
  19. Plancade, S. (2011) Model selection for hazard rate estimation in presence of censoring. Metrika 74, 313-347.
  20. Ramlau-Hansen, H. (1983). Smoothing counting process intensities by means of kernel functions. Ann. Statist. 11, 453-466.
  21. Reynaud-Bouret, P. (2006). Penalized projection estimators of the Aalen multiplicative intensity. Bernoulli 12, 633-661
  22. Tanner, M. A. and Wong, W.H. (1983). The estimation of the hazard function from randomly censored data by the kernel method. Ann. Statist. 11, 989-993.
  23. Tropp, J. A. (2012). User-friendly tail bounds for sums of random matrices. Found. Comput. Math., 12(4):389-434.
  24. Uzunoḡullari, U. and Wang, J.L. (1992). A comparison of hazard rate estimators for left truncated and right censored data. Biometrika 79, 297-310.
  25. Wu, S.S. and Wells, M.T. (2003). Nonparametric estimation of hazard functions by wavelet methods. Nonparametric Statistics 15, 187-203.
  26. Yandell, B. S. (1983). Nonparametric inference for rates with censored survival data. Ann. Statist. 11, 1119-1135.