Minus Partial Order in Regular Modules
2019, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1907.02119Abstract
The minus partial order is already known for sets of matrices over a field and bounded linear operators on arbitrary Hilbert spaces. Recently, this partial order has been studied on Rickart rings. In this paper, we extend the concept of the minus relation to the module theoretic setting and prove that this relation is a partial order when the module is regular. Moreover, various characterizations of the minus partial order in regular modules are presented and some well-known results are also generalized.
References (15)
- J. K. Baksalary, S. K. Mitra, Left-star and right-star partial orderings, Linear Algebra Appl. 149 (1991), 73-89.
- S. K. Berberian, Baer * -rings, Springer-Verlag, New York, 1972.
- B. Blackwood, S. K. Jain, K. M. Prasad, A. K. Srivastava, Shorted operators relative to a partial order in a regular ring, Commun. Algebra 37 (2009), 4141-4152.
- D. S. Djordjević, D. S. Rakić, J. Marovt, Minus partial order in Rickart rings, Publ. Math. Debrecen 87 (2015), No. 3/4, 291-305.
- G. Dolinar, A. Guterman, J. Marovt, Monotone transformations on B(H) with respect to the left-star and the right-star partial order, Math. Inequal. Appl. 17 (2014), No. 2, 573-589.
- M. P. Drazin, Natural structures on semigroups with involution, Bull. Amer. Math. Soc. 84 (1978), 139-141.
- R. E. Hartwig, How to partially order regular elements, Math. Japon. 25 (1980), 1-13.
- P. M. Higgins, Techniques of the semigroup theory, Oxford University Press, Oxford, 1992.
- I. Kaplansky, Rings of Operators, W. A. Benjamin Inc., New York-Amsterdam, 1968.
- J. Marovt, D. S. Rakić, D. S. Djordjević, Star, left-star, and right-star partial orders in Rickart * -rings, Linear Multilinear Algebra 63 (2015), No.2, 343-365.
- H. Mitsch, A natural partial order for semigroups, Proc. Amer. Math. Soc. 97 (1986), No. 3, 384-388.
- M. Z. Nashed (ed.), Generalized inverses and applications, Academic Press, New York- London, 1976.
- W. K. Nicholson, M. F. Yousif, Quasi-Frobenius Rings, Cambridge Tracts in Mathematics, 158, Cambridge University Press, Cambridge, 2003.
- P. Šemrl, Automorphisms of B(H) with respect to minus partial order, J. Math. Anal. Appl. 369 (2010), 205-213.
- J. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163 (1972), 341-355. Burcu Ungor, Department of Mathematics, Ankara University, Ankara, Turkey