Academia.eduAcademia.edu

Outline

A Generalization of Rickart Modules

Bulletin of the Belgian Mathematical Society - Simon Stevin

https://doi.org/10.36045/BBMS/1400592627

Abstract

Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper we introduce π-Rickart modules as a generalization of generalized right principally projective rings as well as that of Rickart modules. The module M is called π-Rickart if for any f ∈ S, there exist e 2 = e ∈ S and a positive integer n such that rM (f n) = eM. We prove that several results of Rickart modules can be extended to π-Rickart modules for this general settings, and investigate relations between a π-Rickart module and its endomorphism ring.

References (28)

  1. then Tr(M, r M (f n )) is a direct summand of M .
  2. If M is a flat left S-module and S is a generalized right principally projective ring, then M is π-Rickart as an R-module.
  3. Tr(M, r M (f n )) = eM . Since f n eM = 0, eM ≤ Tr(M, r M (f n )). Let g ∈ Hom(M, r M (f n )). so eg = g. It follows that gM ≤ egM ≤ eM or Hom(M, r M (f
  4. M ≤ eM . (2) Assume that M is a flat left S-module and S is a generalized right principally projective ring. If f ∈ S, then f n S is a projective right S- module, since r S (f n ) = eS for some positive integer n and e 2 = e ∈ S. As in the proof of (1), we have Tr(M, r M (f n )) = eM . Since M is a flat left S-module and f n ∈ S, r M (f n ) is M -generated by [20, 15.9]. Again by [20, 13.5(2)], Tr(M, r M (f
  5. module M , it is shown that if S is a von Neumann regular ring, then M is a Rickart module (see [12, Theorem
  6. We obtain a similar result for π-Rickart modules. Lemma 3.9. Let M be a module. If S is a π-regular ring, then M is a π-Rickart module.
  7. Proof. Let f ∈ S. Since S is π-regular, there exist a positive integer n and an element g in S such that f n = f n gf n . Then gf n is an idempotent of S. Now we show that r M (f n ) = (1 -gf n )M . For m ∈ M , we have f n (1 -gf n )m = (f n -f n gf n )m = (f n -f n )m = 0. Hence (1 -gf n )M ≤ r M (f n ). For the other side, if m ∈ r M (f n ), then gf n m = 0. This implies that m = (1 -gf n )m ∈ (1 -gf n )M . Therefore r M (f n ) = (1 -gf n )M . Now we recall some known facts that will be needed about π-regular rings. Lemma 3.10. Let R be a ring. Then (1) If R is π-regular, then eRe is also π-regular for any e 2 = e ∈ R. (2) If M n (R) is π-regular for any positive integer n, then so is R. References
  8. N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, appears in Bull. Iran. Math. Soc. available at http://www.iranjournals.ir/ims/bulletin/
  9. E. P. Armendariz, J. W. Fisher and R. L. Snider, On injective and surjective endo- morphisms of finitely generated modules, Comm. Algebra 6(7)(1978), 659-672.
  10. A. Ghorbani and M. R. Vedadi, Epi-Retractable modules and some applications, Bull. Iran. Math. Soc. 35(1)(2009), 155-166.
  11. A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math. J. 17(1960), 147-158.
  12. Y. Hirano, On generalized p.p.-rings, Mathematical Journal of Okayama University 25(1)(1983), 7-11.
  13. A. Hmaimou, A. Kaidi and E. Sanchez Campos, Generalized fitting modules and rings, J. Algebra 308(1)(2007), 199-214.
  14. Q. Huang and J. Chen, π-Morphic rings, Kyungpook Math. J. 47(2007), 363-372.
  15. C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167(1)(2002), 37-52.
  16. I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
  17. T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
  18. T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 2001.
  19. G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38(11)(2010), 4005-4027.
  20. G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart Modules, Comm. Algebra 39(2011), 4036-4058.
  21. W. K. Nicholson and E. Sanchez Campos, Morphic Modules, Comm. Algebra 33(2005), 2629-2647.
  22. S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004), 103-123.
  23. S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696.
  24. J. E. Roos, Sur les categories spectrales localement distributives, C. R. Acad. Sci. Paris Ser. A-B 265(1967), 14-17.
  25. W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138(1969), 505-512.
  26. R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155, 1(1971), 233-256.
  27. R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
  28. J. M. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163(1972), 341-355. Burcu Ungor, Department of Mathematics, Ankara University, Turkey