A Generalization of Rickart Modules
Bulletin of the Belgian Mathematical Society - Simon Stevin
https://doi.org/10.36045/BBMS/1400592627Abstract
Let R be an arbitrary ring with identity and M a right R-module with S = EndR(M). In this paper we introduce π-Rickart modules as a generalization of generalized right principally projective rings as well as that of Rickart modules. The module M is called π-Rickart if for any f ∈ S, there exist e 2 = e ∈ S and a positive integer n such that rM (f n) = eM. We prove that several results of Rickart modules can be extended to π-Rickart modules for this general settings, and investigate relations between a π-Rickart module and its endomorphism ring.
References (28)
- then Tr(M, r M (f n )) is a direct summand of M .
- If M is a flat left S-module and S is a generalized right principally projective ring, then M is π-Rickart as an R-module.
- Tr(M, r M (f n )) = eM . Since f n eM = 0, eM ≤ Tr(M, r M (f n )). Let g ∈ Hom(M, r M (f n )). so eg = g. It follows that gM ≤ egM ≤ eM or Hom(M, r M (f
- M ≤ eM . (2) Assume that M is a flat left S-module and S is a generalized right principally projective ring. If f ∈ S, then f n S is a projective right S- module, since r S (f n ) = eS for some positive integer n and e 2 = e ∈ S. As in the proof of (1), we have Tr(M, r M (f n )) = eM . Since M is a flat left S-module and f n ∈ S, r M (f n ) is M -generated by [20, 15.9]. Again by [20, 13.5(2)], Tr(M, r M (f
- module M , it is shown that if S is a von Neumann regular ring, then M is a Rickart module (see [12, Theorem
- We obtain a similar result for π-Rickart modules. Lemma 3.9. Let M be a module. If S is a π-regular ring, then M is a π-Rickart module.
- Proof. Let f ∈ S. Since S is π-regular, there exist a positive integer n and an element g in S such that f n = f n gf n . Then gf n is an idempotent of S. Now we show that r M (f n ) = (1 -gf n )M . For m ∈ M , we have f n (1 -gf n )m = (f n -f n gf n )m = (f n -f n )m = 0. Hence (1 -gf n )M ≤ r M (f n ). For the other side, if m ∈ r M (f n ), then gf n m = 0. This implies that m = (1 -gf n )m ∈ (1 -gf n )M . Therefore r M (f n ) = (1 -gf n )M . Now we recall some known facts that will be needed about π-regular rings. Lemma 3.10. Let R be a ring. Then (1) If R is π-regular, then eRe is also π-regular for any e 2 = e ∈ R. (2) If M n (R) is π-regular for any positive integer n, then so is R. References
- N. Agayev, S. Halicioglu and A. Harmanci, On Rickart modules, appears in Bull. Iran. Math. Soc. available at http://www.iranjournals.ir/ims/bulletin/
- E. P. Armendariz, J. W. Fisher and R. L. Snider, On injective and surjective endo- morphisms of finitely generated modules, Comm. Algebra 6(7)(1978), 659-672.
- A. Ghorbani and M. R. Vedadi, Epi-Retractable modules and some applications, Bull. Iran. Math. Soc. 35(1)(2009), 155-166.
- A. Hattori, A foundation of the torsion theory over general rings, Nagoya Math. J. 17(1960), 147-158.
- Y. Hirano, On generalized p.p.-rings, Mathematical Journal of Okayama University 25(1)(1983), 7-11.
- A. Hmaimou, A. Kaidi and E. Sanchez Campos, Generalized fitting modules and rings, J. Algebra 308(1)(2007), 199-214.
- Q. Huang and J. Chen, π-Morphic rings, Kyungpook Math. J. 47(2007), 363-372.
- C. Huh, H. K. Kim, and Y. Lee, p.p. rings and generalized p.p. rings, J. Pure Appl. Algebra 167(1)(2002), 37-52.
- I. Kaplansky, Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
- T. Y. Lam, Lectures on Modules and Rings, Springer-Verlag, New York, 1999.
- T. Y. Lam, A first course in noncommutative rings, Springer-Verlag, New York, 2001.
- G. Lee, S. T. Rizvi and C. S. Roman, Rickart Modules, Comm. Algebra 38(11)(2010), 4005-4027.
- G. Lee, S. T. Rizvi and C. S. Roman, Dual Rickart Modules, Comm. Algebra 39(2011), 4036-4058.
- W. K. Nicholson and E. Sanchez Campos, Morphic Modules, Comm. Algebra 33(2005), 2629-2647.
- S. T. Rizvi and C. S. Roman, Baer and Quasi-Baer Modules, Comm. Algebra 32(2004), 103-123.
- S. T. Rizvi and C. S. Roman, On direct sums of Baer modules, J. Algebra 321(2009), 682-696.
- J. E. Roos, Sur les categories spectrales localement distributives, C. R. Acad. Sci. Paris Ser. A-B 265(1967), 14-17.
- W. V. Vasconcelos, On finitely generated flat modules, Trans. Amer. Math. Soc. 138(1969), 505-512.
- R. Ware, Endomorphism rings of projective modules, Trans. Amer. Math. Soc. 155, 1(1971), 233-256.
- R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
- J. M. Zelmanowitz, Regular modules, Trans. Amer. Math. Soc. 163(1972), 341-355. Burcu Ungor, Department of Mathematics, Ankara University, Turkey