Abstract
This workshop concentrated on some of the major areas of Poisson geometry and its applications.
References (107)
- C. Arias Abad, M. Crainic, Representations up to homotopy for Lie algebroids, in progress.
- K. Behrend, On the de Rham cohomology of differential and algebraic stacks, Advances in Mathematics 198 (2005), no 2, 583-622.
- R.Bott, On the Chern-Weil homomorphism and continuous cohomology of Lie groups, Ad- vances in Mathematics 11, 289-303 (1973).
- R.Bott, L.Tu Equivariant characteristic classes in the Cartan model, arXiv:math/0102001. preprint.
- E. Getzler, The equivariant chern character for noncompact groups, Advances in Mathe- matics 109, 88-117 (1994).
- V. Guillemin, S. Sternberg, Supersymmetry and equivariant de Rham theory, Springer- Verlag (1999).
- J. Kalkman, A BRST model for equivariant cohomology applied to symplectic geometry, PhD Thesis, Utrecht, 1993.
- I. Moerdijk, Orbifolds as groupoids: an introduction, Orbifolds in mathematics and physics(Madison, WI,2001),205-222, Contemp. Math, 310, Amer. Math Soc, Providence, RI,2002.
- D. Quillen, Superconnections and the Chern character, Topology 24 (1985), no.1, 89-95. References
- H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri. Reduction of Courant algebroids and generalized complex structures, Adv. in Math. 211 (2007), 726-765.
- H. Bursztyn, G. R. Cavalcanti, and M. Gualtieri. Generalized Kähler and hiper-Kähler quotients, arXiv:math/0702104v1 [math.DG].
- References
- A. S. Cattaneo, Deformation quantization and reduction, math/0701378. Double of a cluster variety Vladimir Fock (joint work with Aleksandr Goncharov) References
- V.V. Fock, A.B. Goncharov Cluster X-varieties, amalgamation and Poisson-Lie groups, n Algebraic Geometry Theory and Number Theory, Birkhäuser, Progress in math. Vol. 253, 2006, arXiv:math.RT/0508408
- V.V. Fock, A.B. Goncharov The quantum dilogarithm and unitary representations of the cluster mapping class groups, arXiv:math/0702397
- M. Bordemann, M. Brischle, C. Emmrich, S. Waldmann, Phase Space Reduction for Star Products : An Explicit Construction for CP n , Lett. Math. Phys. 36 (1996), 357-371.
- P. Bieliavsky, M. Cahen, S. Gutt, J. Rawnsley, L. Schwachhöfer, Symplectic connections, preprint SG/0511194, International Journal of Geometric Methods in Modern Physics, Vol. 3, No. 3 (2006) 375-420
- Cahen M., Gutt S., Schwachhöfer L.: Construction of Ricci-type connections by reduction and induction, in The breadth of symplectic and Poisson Geometry, Marsden, J.E. and Ratiu, T.S. (eds), Progress in Math 232, Birkhauser, 2004, 41-57.
- Cahen M. and Schachhöfer L., Special symplectic connections, preprint DG0402221. References
- V. Fock, A. Goncharov, Moduli spaces of local systems and higher Teichmüller theory, Publ. Math. Inst. Hautes Études Sci. 103 (2006), 1-211.
- S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations J. Amer. Math. Soc. 15 no. 2 (2002), 497-529 (electronic).
- A. Henriques, J. Kamnitzer, Crystals and cobounday categories, Duke Math. J. 132 no. 2 (2006), 191-216.
- R. C. Penner, The decorated Teichmüller space of punctured surfaces Comm. Math. Phys. 113 no.2 (1987), 299-339.
- M. Bordemann, H.-C. Herbig and S. Waldmann, BRST cohomology and phase space reduc- tion in deformation quantization, Comm. Math. Phys. 210 (2000), 107-144.
- M. Bordemann, H.-C. Herbig and M. Plaum, A homological approach to singular reduction in defoemation quantization. in: Singularity theory -Dedicated to Jean-Paul Brasselet on His 60th Birthday, Proceedings of the 2005 Marseille Singularity School and Conference, CIRM, Marseille, 2005, edited by Denis Chéniot et. al.
- H.-C. Herbig Variations on homological reduction, Dissertation, Goethe-Universität Frank- furt a. M. (2007).
- J. Huebschmann and T. Kadeishvili, Small models for chain algebras, Math. Z. 207 (1991), 245-280.
- J. P. Brennan, M. V. Pinto, and W. V. Vasconcelos, , The Jacobian module of a Lie algebra., Trans. Amer. Math. Soc. 321 (1990), 183-196.
- R. Cushman and R. Sjamaar, On singular reduction of Hamiltonian spaces. in: Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), edited by P. Donato et. al., Progress in Mathematics 99.
- J. Arms, M. Gotay and G. Jennings, Geometric and algebraic reduction for singular mo- mentum maps, Adv. Math. 79 (1990), 43-103.
- H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics, Volume 8, second edition, Cambridge 1989.
- E. Bierstone and G. W. Schwarz, Continuous linear division and extension of C ∞ functions, Duke Math. J. 50 (1983), 233-271.
- V.L. Ginzburg, Equivariant Poisson cohomology and a spectral sequence associated with a moment map, Internat. J. Math. 10 (1999), 977-1010.
- J. Stasheff, Homological reduction of constrained Poisson algebras, J. Differential Geom. 45 (1997), 221-240.
- A. Alekssev, P. Xu, Courant algebroids and derived brackets, preprint 2002.
- R. Caseiro, Modular classes of Poisson-Nijenhuis Lie algebroids, preprint arXiv:math/0701476.
- P. A. Damianou, R. Fernandes, Integrable hierarchies and the modular class, preprint arXiv:math/0607784.
- S. Evens, J.-H. Lu, A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Ser.2 50 (1999), 417-436.
- J. Grabowski, G. Marmo, P. W. Michor, Homology and modular classes of Lie algebroids, Ann. Inst. Fourier (Grenoble) 56 (2006), 69-83.
- Y. Kosmann-Schwarzbach, Modular vector fields and Batalin-Vilkovisky algebras, in Poisson Geometry, J. Grabowski, P. Urbanski, eds., Banach Center Publ. 51 (2000), 109-129.
- Y. Kosmann-Schwarzbach, C. Laurent-Gengoux, The modular class of a twisted Poisson structure, Travaux mathématiques (Luxembourg) (2005) 16, 315-339.
- Y. Kosmann-Schwarzbach, C. Laurent-Gengoux, A. Weinstein, in preparation.
- Y. Kosmann-Schwarzbach, F. Magri, On the modular classes of Poisson-Nijenhuis manifolds, preprint arXiv:math/0611202.
- Y. Kosmann-Schwarzbach, A. Weinstein, Relative modular classes of Lie algebroids, C. R. Acad. Sci. Paris, Ser. I 341 (2005), 509-514.
- Y. Kosmann-Schwarzbach, M. Yakimov, Modular classes of regular twisted Poisson struc- tures on Lie algebroids, Lett. Math. Phys. 80 (2007), 183-197.
- J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie, in Élie Cartan et les mathématiques d'aujourd'hui, Astérisque (1985), Numéro hors série, 257-271.
- E. Meinrenken, Lectures on pure spinors and moment maps, preprint arXiv:math/0609319.
- P. Ševera, A. Weinstein, Poisson geometry with a 3-form background, in Noncommutative Geometry and String Theory, Progr. Theoret. Phys. Suppl. no. 144 (2001), 145-154.
- A. Weinstein, The modular automorphism group of a Poisson manifold, J. Geom. Phys. 23 (1997), 379-394.
- M. Crainic and R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), 575-620.
- M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Differential Geom. 66 (2004), 71-137.
- M. Crainic and R. L. Fernandes and D. Martínez Torres, Poisson manifolds of compact type, in preparation.
- D. Kotschick, Free circle actions with contractible orbits on symplectic manifolds, Math. Z. 252 (2006), no. 1, 19-25.
- Nguyen Tien Zung, Proper Groupoids and Momentum Maps: Linearization, Affinity and Convexity, math.SG/0407208
- S. Bochner, Compact groups of differentiable transformations. Ann. of Math. (2) 46, (1945). 372-381.
- M. Chaperon, Quelques outils de la théorie des actions différentiables Third Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), 259-275, Astérisque, 107-108, Soc. Math. France, Paris, 1983.
- C. Chevalley and S. Eilenberg, Cohomology theory of Lie groups and Lie algebras, Trans. Amer. Math. Soc. 63 (1948), 85-124.
- J. Conn, Normal forms for Analytic Poisson structures,Ann. of Math(2)119, n3, 577-601.
- J. Conn, Normal forms for smooth Poisson structures. Ann. of Math. (2) 121 (1985), no. 3, 565-593.
- V. Ginzburg, Momentum mappings and Poisson cohomology. Internat. J. Math. 7 (1996), no. 3, 329-358.
- V. Ginzburg, V. Guillemin and Y. Karshon, Moment maps, cobordisms, and Hamiltonian group actions, AMS, 2004.
- R. Hamilton, The inverse function theorem of Nash and Moser. Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 1, 65-222.
- R. Hamilton, Deformation theory for foliations, Preprint Cornell University.
- E. Miranda, Ph. Monnier and Nguyen Tien Zung, Rigidity of Poisson group actions, preprint 2007.
- E. Miranda and N. T. Zung, A note on equivariant normal forms of Poisson structures, Math. Research Notes, 2006, vol 13-6, 1001-1012.
- R. Palais, Equivalence of nearby differentiable actions of a compact group. Bull. Amer. Math. Soc. 67 1961 362-364.
- Y. Vorobjev, Coupling tensors and Poisson geometry near a single symplectic leaf. Lie algebroids and related topics in differential geometry (Warsaw, 2000), 249-274, Banach Center Publ., 54, Polish Acad. Sci., Warsaw, 2001.
- A. Weinstein, Lectures on symplectic manifolds. Regional Conference Series in Mathematics, No.29. American Mathematical Society, Providence, R.I., 1977.
- A. Weinstein, The local structure of Poisson manifolds., J. Differential Geom. 18 (1983), no. 3, 523-557. References
- B. Chen and S. Hu. A deRham model for Chen-Ruan cohomology ring of Abelian orbifolds, Math. Ann. 336, 51-71 (2006).
- W. Chen and Y. Ruan: A new cohomology theory of orbifold, Comm. Math. Phys. 248, no. 1, 1-31 (2004).
- N. Neumaier, M. Pflaum, H. Posthuma and X. Tang: Homology of of formal deformations of proper étale Lie groupoids. J. Reine u. Angew. Math. 593,
- M. Pflaum, H. Posthuma, X.Tang and H.-H. Tseng. Orbifold cup products and ring struc- tures on Hochschild cohomologies. Preprint.
- P. Xu and A. Weinstein. Hochschild cohomology and characteristic classes for star-products. In; Geometry of differential equations. Amer. Math. Soc. Transl. Ser. 2, 186, Amer. Math. Soc., Providence, RI p. 177-194 1998
- References
- M.F . Atiyah, Convexity and commuting hamiltonians, Bull. London Math. Soc., 14(1982), pp. 1-15.
- P. Birtea, J.-P. Ortega, and T.S. Ratiu, Openness and convexity for momentum maps, Trans. Amer. Math. Soc. 32 (2007), 100-120.
- P. Birtea, J.-P. Ortega, and T.S. Ratiu, Metric convexity in the symplectic category, preprint, 2007.
- M. P. Condevaux, P. Dazord, and P. Molino, Geometrie du moment, Travaux du Séminaire Sud-Rhodanien de Géométrie, I, Publ. Dép. Math. Nouvelle Sér. B, 88-1, Univ. Claude- Bernard, Lyon, 1988, 131-160.
- H. Flaschka, H. and T.S. Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. École Normale Supérieure, 29(1996), 787-811.
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math., 67(1982), 491-513.
- V. Guillemin and S. Sternberg, Convexity properties of the moment mapping II, Invent. Math., 77(1984), 533-546.
- J. Hilgert, K.-H. Neeb, and W. Plank, Symplectic convexity theorems and coadjoint ornits, Compositio Math., 94(1994), 129-180.
- F.C. Kirwan, Convexity properties of the moment mapping III, Invent. Math., 77(1984), 547-552.
- J.-P. Ortega and T.S. Ratiu, Momentum Maps and Hamiltonian Reduction, Progress in Mathematics 222, Birkhäuser Boston, 2004.
- J.-P. Ortega and T.S. Ratiu, The reduced spaces of a symplectic Lie group action, Ann. Global Anal. Geom., 30(2006), 335-381.
- J.-P. Ortega and T.S. Ratiu, The stratified spaces of a symplectic Lie group action, Rep. Math. Phys., 58(1)(2006), 51-75. References
- Bursztyn, H., Waldmann, S.: Deformation Quantization of Hermitian Vector Bundles. Lett. Math. Phys. 53 (2000), 349-365.
- Waldmann, S.: States and Representation Theory in Deformation Quantization. Rev. Math. Phys. 17 (2005), 15-75.
- Weiß, S.: Nichtkommutative Eichtheorien und Deformationsquantisierung von Haupt- faserb"undeln. master thesis, Fakultät für Mathematik und Physik, Physikalisches Institut, Albert-Ludwigs-Universität, Freiburg, 2006. References
- A. Berenstein, S. Fomin, and A. Zelevinsky, Cluster algebras. III. Upper bounds and double Bruhat cells, Duke Math. J., 126 (2005), 1-52.
- K. A. Brown, K. A. Goodearl, and M. Yakimov, Poisson structures on affine spaces and flag varieties. I. Matrix affine Poisson space, Advances in Math. 206 (2006), 567-629.
- M. Crainic and R. L. Fernandes, Integrability of Poisson brackets, J. Diff. Geom. 66 (2004), 71-137.
- V. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math., 79 (1985), 499-511.
- K. A. Goodearl and M. Yakimov, Poisson structures on affine spaces and flag varieties. II, preprint math.QA/0509075.
- G. Lusztig, Total positivity in partial flag manifolds, Representation Theory 2 (1998), 70-78.
- R. Richardson, G. Röhrle, and R. Steinberg, Parabolic subgroups with Abelian unipotent radical, Invent. Math. 110 (1992), 649-671.
- Ben Webster and Milen Yakimov, A Deodhar type stratification on the double flag variety, preprint, math.SG/0607374, Transformation Groups, in press.
- P. Xu, Dirac submanifolds and Poisson involutions, Ann. Sci. École Norm. Sup. (4) 36 (2003), 403-430.
- K. Behrend and P. Xu, Differentiable Stacks and Gerbes, arxiv:math.DG/0605694.
- L. Breen, Bitorseurs et cohomologie non abélienne, in The Grothendieck Festschrift, Vol. I, volume 86 of Progr. Math., pages 401-476. Birkhäuser Boston, Boston, MA, 1990.
- H. Bursztyn and C. Zhu, Morita equivalence of weinstein groupoids, in preparation.
- H.-H. Tseng and C. Zhu, Integrating Lie algebroids via stacks, Compos. Math., 142(1):251- 270, 2006.
- H.-H. Tseng and C. Zhu, Integrating Poisson manifolds via stacks, Travaux mathématique, 15:285-297, 2006.
- A. Weinstein and P. Xu, Extensions of symplectic groupoids and quantization, J. Reine Angew. Math., 417:159-189, 1991.
- P. Xu, Morita equivalence of Poisson manifolds, Comm. Math. Phys., 142(3):493-509, 1991.
- C. Zhu, Lie n-groupoids and stacky Lie groupoids, arXiv:math.DG/0609420. Reporter: Rui Loja Fernandes