Poisson Structures and Potentials
Lie Groups, Geometry, and Representation Theory
https://doi.org/10.1007/978-3-030-02191-7_1Abstract
We introduce a notion of weakly log-canonical Poisson structures on positive varieties with potentials. Such a Poisson structure is log-canonical up to terms dominated by the potential. To a compatible real form of a weakly log-canonical Poisson variety we assign an integrable system on the product of a certain real convex polyhedral cone (the tropicalization of the variety) and a compact torus. We apply this theory to the dual Poisson-Lie group G * of a simply-connected semisimple complex Lie group G. We define a positive structure and potential on G * and show that the natural Poisson-Lie structure on G * is weakly log-canonical with respect to this positive structure and potential. For K ⊂ G the compact real form, we show that the real form K * ⊂ G * is compatible and prove that the corresponding integrable system is defined on the product of the decorated string cone and the compact torus of dimension 1 2 (dim G − rank G).
References (20)
- A. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), no. 2, 241-256.
- A. Alekseev, I. Davydenkova, Inequalities from Poisson brackets, Indag. Math. 25 (5) (2014) 846-871.
- A. Alekseev, E. Meinrenken, Ginzburg-Weinstein from Gelfand-Zeitlin, J. Differential Geom. 76 (2007), no. 1, 1-34.
- A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special Volume, Part I (2000), 188-236.
- A. Berenstein, D. Kazhdan, Geometric and unipotent crystals II: From unipotent bicrystals to crystal bases quantum groups, Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88.
- A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (1) (2005) 1-52.
- A. Berenstein, A. Zelevinsky, Canonical bases for the quantum group of type A r and piecewise linear com- binatorics, Duke Math. J. 82 (1996), 473-502.
- A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128-166. CMP 97:14.
- A. Berenstein, A. Zelevinsky: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77-128 (2001).
- P. Etingof, O. Schiffmann, Lectures on Quantum Groups, 2nd edition, International Press, 2002.
- S. Fomin, A. Zelevinsky, Double Bruhat Cells and total positivity, J. Amer. Math. Soc. 12 (1999) 335-380.
- M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899-934, 1199.
- V. Ginzburg, A. Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (2) (1992) 445-453.
- M. Kogan, A. Zelevinsky, On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups, Int. Math. Res. Not. 32 (2002) 1685-1702.
- J. H. Lu, A. Weinstein, Poisson-Lie groups, dressing transformations and Bruhat decompositions, J. Differ- ential Geom. 31 (1990), no.2, 501-526.
- G. Mikhalkin, Tropical geometry and its applications, International Congress of Mathematicians. Vol. II, 827-852, Eur. Math. Soc., Zürich, 2006.
- K. Rietsch, A mirror symmetric construction of qH * T (G/P ) (q) , Adv. Math. 217 (2008), no. 6, 2401-2442.
- M. A. Semenov-Tian-Shansky, What is a classical r-matrix?, Functional Analysis and Its Applications 17 (1983) no. 4, 259-272.
- M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1237-1260.
- P. Xu, Dirac submanifolds and Poisson involutions, Ann. Scient. Éc. Norm. Sup., 36 (2003), 403 -430 SECTION OF MATHEMATICS, UNIVERSITY OF GENEVA, 2-4 RUE DU LIÈVRE, C.P. 64, 1211 GENÈVE 4, SWITZERLAND