Academia.eduAcademia.edu

Outline

Poisson Structures and Potentials

Lie Groups, Geometry, and Representation Theory

https://doi.org/10.1007/978-3-030-02191-7_1

Abstract

We introduce a notion of weakly log-canonical Poisson structures on positive varieties with potentials. Such a Poisson structure is log-canonical up to terms dominated by the potential. To a compatible real form of a weakly log-canonical Poisson variety we assign an integrable system on the product of a certain real convex polyhedral cone (the tropicalization of the variety) and a compact torus. We apply this theory to the dual Poisson-Lie group G * of a simply-connected semisimple complex Lie group G. We define a positive structure and potential on G * and show that the natural Poisson-Lie structure on G * is weakly log-canonical with respect to this positive structure and potential. For K ⊂ G the compact real form, we show that the real form K * ⊂ G * is compatible and prove that the corresponding integrable system is defined on the product of the decorated string cone and the compact torus of dimension 1 2 (dim G − rank G).

References (20)

  1. A. Alekseev, On Poisson actions of compact Lie groups on symplectic manifolds, J. Differential Geom. 45 (1997), no. 2, 241-256.
  2. A. Alekseev, I. Davydenkova, Inequalities from Poisson brackets, Indag. Math. 25 (5) (2014) 846-871.
  3. A. Alekseev, E. Meinrenken, Ginzburg-Weinstein from Gelfand-Zeitlin, J. Differential Geom. 76 (2007), no. 1, 1-34.
  4. A. Berenstein and D. Kazhdan, Geometric and unipotent crystals, Geom. Funct. Anal., Special Volume, Part I (2000), 188-236.
  5. A. Berenstein, D. Kazhdan, Geometric and unipotent crystals II: From unipotent bicrystals to crystal bases quantum groups, Contemp. Math., vol. 433, Amer. Math. Soc., Providence, RI, 2007, pp. 13-88.
  6. A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III. Upper bounds and double Bruhat cells, Duke Math. J. 126 (1) (2005) 1-52.
  7. A. Berenstein, A. Zelevinsky, Canonical bases for the quantum group of type A r and piecewise linear com- binatorics, Duke Math. J. 82 (1996), 473-502.
  8. A. Berenstein, A. Zelevinsky, Total positivity in Schubert varieties, Comment. Math. Helv. 72 (1997), 128-166. CMP 97:14.
  9. A. Berenstein, A. Zelevinsky: Tensor product multiplicities, canonical bases and totally positive varieties. Invent. Math. 143, 77-128 (2001).
  10. P. Etingof, O. Schiffmann, Lectures on Quantum Groups, 2nd edition, International Press, 2002.
  11. S. Fomin, A. Zelevinsky, Double Bruhat Cells and total positivity, J. Amer. Math. Soc. 12 (1999) 335-380.
  12. M. Gekhtman, M. Shapiro, and A. Vainshtein, Cluster algebras and Poisson geometry, Mosc. Math. J. 3 (2003), no. 3, 899-934, 1199.
  13. V. Ginzburg, A. Weinstein, Lie-Poisson structure on some Poisson Lie groups, J. Amer. Math. Soc. 5 (2) (1992) 445-453.
  14. M. Kogan, A. Zelevinsky, On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups, Int. Math. Res. Not. 32 (2002) 1685-1702.
  15. J. H. Lu, A. Weinstein, Poisson-Lie groups, dressing transformations and Bruhat decompositions, J. Differ- ential Geom. 31 (1990), no.2, 501-526.
  16. G. Mikhalkin, Tropical geometry and its applications, International Congress of Mathematicians. Vol. II, 827-852, Eur. Math. Soc., Zürich, 2006.
  17. K. Rietsch, A mirror symmetric construction of qH * T (G/P ) (q) , Adv. Math. 217 (2008), no. 6, 2401-2442.
  18. M. A. Semenov-Tian-Shansky, What is a classical r-matrix?, Functional Analysis and Its Applications 17 (1983) no. 4, 259-272.
  19. M. A. Semenov-Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1237-1260.
  20. P. Xu, Dirac submanifolds and Poisson involutions, Ann. Scient. Éc. Norm. Sup., 36 (2003), 403 -430 SECTION OF MATHEMATICS, UNIVERSITY OF GENEVA, 2-4 RUE DU LIÈVRE, C.P. 64, 1211 GENÈVE 4, SWITZERLAND