Academia.eduAcademia.edu

Outline

Online Learning in a Chemical Perceptron

2013, Artificial Life

https://doi.org/10.1162/ARTL_A_00105

Abstract

Autonomous learning implemented purely by means of a synthetic chemical system has not been previously realized. Learning promotes reusability and minimizes the system design to simple input-output specification. In this article we introduce a chemical perceptron, the first full-featured implementation of a perceptron in an artificial (simulated) chemistry. A perceptron is the simplest system capable of learning, inspired by the functioning of a biological neuron. Our artificial chemistry is deterministic and discrete-time, and follows Michaelis-Menten kinetics. We present two models, the weight-loop perceptron and the weight-race perceptron, which represent two possible strategies for a chemical implementation of linear integration and threshold. Both chemical perceptrons can successfully identify all 14 linearly separable two-input logic functions and maintain high robustness against rate-constant perturbations. We suggest that DNA strand displacement could, in principle, provide ...

References (56)

  1. Adleman, L. M. (1994). Molecular computation of solutions to combinatorial problems. Science, 266(5187), 1021-1024.
  2. Amos, M. (2003). Theoretical and experimental DNA computation. Berlin: Springer-Verlag.
  3. Arnaut, L. G., Formosinho, S. a. J., & Burrows, H. (2007). Chemical kinetics: From molecular structure to chemical reactivity. Amsterdam: Elsevier.
  4. Banzhaf, W. (1990). The molecular traveling salesman. Biological Cybernetics, 64(1), 7-14.
  5. Bitbol, M., & Luisi, L. P. (2004). Autopoiesis with or without cognition: Defining life at its edge. Journal of The Royal Society Interface, 1(1), 99-107.
  6. Braich, R. S., Chelyapov, N., Johnson, C., Rothemund, P. W. K., & Adleman, L. (2002). Solution of a 20-variable 3-SAT problem on a DNA computer. Science, 296, 499-502.
  7. Bray, D. (1995). Protein molecules as computational elements in living cells. Nature, 376(6538), 307-312.
  8. Brooks, R. (1989). A robot that walks; Emergent behaviors from a carefully evolved network. Neural Computation, 1(2), 253-262.
  9. Buchler, N. E., Gerland, U., & Hwa, T. (2003). On schemes of combinatorial transcription logic. Proceedings of the National Academy of Sciences of the United States of America, 100(9), 5136-5141.
  10. Copeland, R. A. (2002). Enzymes: A practical introduction to structure, mechanism, and data analysis (2nd ed.). New York: Wiley.
  11. P. Banda et al. Online Learning in a Chemical Perceptron Artificial Life Volume 19, Number 2
  12. de Silva, A. P., Dobbin, C. M., Vance, T. P., & Wannalerse, B. (2009). Multiply reconfigurable "plug and play" molecular logic via self-assembly. Chemical Communications, No. 11, pp. 1386-1388.
  13. Dittrich, P. (2005). Chemical computing. In J.-P. Banâtre, P. Fradet, J.-L. Giavitto, & O. Michel (Eds.), Unconventional programming paradigms (pp. 21-32). Berlin: Springer-Verlag.
  14. Dittrich, P., Ziegler, J., & Banzhaf, W. (2001). Artificial chemistries-A review. Artificial Life, 7(3), 225-275.
  15. Elliott, L., Ingham, D., Kyne, A., Mera, N., Pourkashanian, M., & Wilson, C. (2004). Genetic algorithms for optimisation of chemical kinetics reaction mechanisms. Progress in Energy and Combustion Science, 30(3), 297-328.
  16. Epstein, I. R., & Pojman, J. A. (1998). An introduction to nonlinear chemical dynamics: Oscillations, waves, patterns, and chaos. Oxford, UK: Oxford University Press.
  17. Espenson, J. (1995). Chemical kinetics and reaction mechanisms. New York: McGraw-Hill.
  18. Faulhammer, D. (2000). Molecular computation: RNA solutions to chess problems. Proceedings of the National Academy of Sciences, 97(4), 1385-1389.
  19. Gillespie, D. T. (1976). A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. Journal of Computational Physics, 22(4), 403-434.
  20. Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry, 81(25), 2340-2361.
  21. Gutiérrez-Naranjo, M. A., & Pérez-Jiménez, M. J. (2009). In Membrane computing (pp. 217-230). Berlin: Springer-Verlag.
  22. Haykin, S. (2009). Neural networks and learning machines (3rd ed.). Upper Saddle River, NJ: Prentice Hall.
  23. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.
  24. Hinze, T., Fassler, R., Lenser, T., Matsumaru, N., & Dittrich, P. (2009). Membrane computing (pp. 231-245). Berlin: Springer-Verlag.
  25. Hjelmfelt, A., & Ross, J. (1992). Chemical implementation and thermodynamics of collective neural networks. Proceedings of the National Academy of Sciences of the United States of America, 89(1), 388-391.
  26. Hjelmfelt, A., Weinberger, E. D., & Ross, J. (1991). Chemical implementation of neural networks and Turing machines. Proceedings of the National Academy of Sciences of the United States of America, 88(24), 10983-10987.
  27. Holmes, M. H. (2007). Introduction to numerical methods in differential equations. Berlin: Springer-Verlag.
  28. Ionescu, M., Paun, G., & Yokomori, T. (2006). Spiking neural P systems. Fundamenta Informaticae, 71(2), 1-28.
  29. Ionescu, M., & Sburlan, D. (2008). Some applications of spiking neural P systems. Computing and Informatics, 27(3), 515-528.
  30. Jahnke, T., & Altntan, D. (2010). Efficient simulation of discrete stochastic reaction systems with a splitting method. BIT Numerical Mathematics, 50(4), 797-822.
  31. Jefferson, D., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C., & Wanq, A. (1990). Evolution as a theme in artificial life: The Genesys/Tracker system (Technical report). Los Angeles: Computer Science Department, University of California.
  32. Jonoska, N. (2008). Biomolecular automata. In O. Shoseyov & I. Levy (Eds.), NanoBioTechnology (pp. 267-299). New York: Humana Press.
  33. Kim, J., Hopfield, J. J., & Winfree, E. (2004). Neural network computation by in vitro transcriptional circuits. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural Information Processing Systems, Vol. 17 (pp. 681-688). Cambridge, MA: MIT Press.
  34. Libecq, C. (Ed.). (1992). Biochemical nomenclature and related documents: A compendium (2nd ed.). London: Portland Press.
  35. Maes, P. (1994). Modeling adaptive autonomous agents. Artificial Life, 1, 135-162.
  36. Michaelis, L., & Menten, M. L. (1913). Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333-369.
  37. P. Banda et al. Online Learning in a Chemical Perceptron
  38. Mills, A. P., Yurke, B., & Platzman, P. M. (1999). Article for analog vector algebra computation. Biosystems, 52(1-3), 175-180.
  39. Minsky, M., & Seymour, P. (1969). Perceptrons. Cambridge, MA: MIT Press.
  40. Mitchell, M. (1996). An introduction to genetic algorithms. Cambridge, MA: MIT Press.
  41. Mitchell, M., & Forrest, S. (1994). Genetic algorithms and artificial life. Artificial Life, 1(3), 267-289.
  42. Nahler, G. (2009). Michaelis-Menten kinetics. In Dictionary of pharmaceutical medicine (pp. 113-113). Berlin: Springer-Verlag.
  43. Ouyang, Q. (1997). DNA solution of the maximal clique problem. Science, 278(5337), 446-449.
  44. Pei, R., Matamoros, E., Liu, M., Stefanovic, D., & Stojanovic, M. N. (2010). Training a molecular automaton to play a game. Nature Nanotechnology, 5(11), 773-777.
  45. Polifke, W., Geng, W., & Döbbeling, K. (1998). Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms. Combustion and Flame, 113(1-2), 119-134.
  46. Rojas, R. (1996). Neural networks: A systematic introduction. Berlin: Springer-Verlag.
  47. Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organisation in the brain. Psychological Review, 65, 368-408.
  48. Schnell, S., & Mendoza, C. (1997). Closed form solution for time-dependent enzyme kinetics. Journal of Theoretical Biology, 187, 207-212.
  49. Soloveichik, D., Seelig, G., & Winfree, E. (2010). DNA as a universal substrate for chemical kinetics. Proceedings of the National Academy of Sciences of the United States of America, 107(12), 5393-5398.
  50. Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis. Berlin: Springer-Verlag.
  51. Stojanovic, M. N., & Stefanovic, D. (2003). A deoxyribozyme-based molecular automaton. Nature Biotechnology, 21(9), 1069-1074.
  52. Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.
  53. Turner, T. E., Schnell, S., & Burrage, K. (2004). Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry, 28(3), 165-178.
  54. Qian, L., & Winfree, E. (2011). Scaling up digital circuit computation with DNA strand displacement cascades. Science, 332, 1196-1201.
  55. Zhang, D. Y., & Seelig, G. (2011). Dynamic DNA nanotechnology using strand-displacement reactions. Nature Chemistry, 3(2), 103-113.
  56. P. Banda et al. Online Learning in a Chemical Perceptron Artificial Life Volume 19, Number 2