Academia.eduAcademia.edu

Outline

Left Quasi- ArtinianModules

2013, American Journal of Mathematics and Statistics

https://doi.org/10.5923/J.AJMS.20130301.04

Abstract

In this paper we study a new class of left quasi-Artinian modules. we show: if R is a left quasi-Artinian ring and M is a left R-module, then (a) Soc(M) ess M and (b) Rad(M) s mall in M .Then we prove: if I is a non-nilpotent left ideal in a left quasi-Artin ian ring, then I contains a non-zero idempotent element. Finally we show that a commutative ring R is quasi-Artinian if and only if R is a direct sum of an Artinian ring with identity and a nilpotent ring .

References (12)

  1. M . F. Atiyah and A. G. M acDonald, Introduction to Commutative Algebra, Addison-Wesley,1969.
  2. D. Burton, A First course in Rings and Ideals, Addison-Wesley,1970.
  3. A. W. Chatters & C. R. Hajarnavis, Rings with chain conditions, Pitman Research notes in M athematics 44 (1980).
  4. I.S .Cohn , Commutative Rings with Restricted minimum condition , Duke M ath. J. 17 (1950), 27-42.
  5. K. R. Goodearl , Ring Theory (nonsingular rings and modules), M arcel Dekker, 1976 .
  6. I.N .Herstein, Non commutative Rings, The M athematical Association of America (1975)
  7. C. Hopkins, Rings with minimum condition for left ideals, Annals of M athematics, 40(1939), 712-730.
  8. M . Gray, A Radical Approach to Algebra, Addison-Wesley,1970.
  9. N. Jacobson, Basic Algebra II ,Freeman 1980.
  10. N.H. M cCoy ,Prime ideals in general rings, Amer. J. math. 71 (1949), 823-833.
  11. R .Wisbauer, Foundations of M odule and Ring Theory, Gorden and Breach science Publisher (1991)
  12. F. W. Anderson &K. R . Fuller ,Ring and Categories of M odules, New York Springer-Verlag Inc, (1973)