Left Quasi- ArtinianModules
2013, American Journal of Mathematics and Statistics
https://doi.org/10.5923/J.AJMS.20130301.04Abstract
In this paper we study a new class of left quasi-Artinian modules. we show: if R is a left quasi-Artinian ring and M is a left R-module, then (a) Soc(M) ess M and (b) Rad(M) s mall in M .Then we prove: if I is a non-nilpotent left ideal in a left quasi-Artin ian ring, then I contains a non-zero idempotent element. Finally we show that a commutative ring R is quasi-Artinian if and only if R is a direct sum of an Artinian ring with identity and a nilpotent ring .
References (12)
- M . F. Atiyah and A. G. M acDonald, Introduction to Commutative Algebra, Addison-Wesley,1969.
- D. Burton, A First course in Rings and Ideals, Addison-Wesley,1970.
- A. W. Chatters & C. R. Hajarnavis, Rings with chain conditions, Pitman Research notes in M athematics 44 (1980).
- I.S .Cohn , Commutative Rings with Restricted minimum condition , Duke M ath. J. 17 (1950), 27-42.
- K. R. Goodearl , Ring Theory (nonsingular rings and modules), M arcel Dekker, 1976 .
- I.N .Herstein, Non commutative Rings, The M athematical Association of America (1975)
- C. Hopkins, Rings with minimum condition for left ideals, Annals of M athematics, 40(1939), 712-730.
- M . Gray, A Radical Approach to Algebra, Addison-Wesley,1970.
- N. Jacobson, Basic Algebra II ,Freeman 1980.
- N.H. M cCoy ,Prime ideals in general rings, Amer. J. math. 71 (1949), 823-833.
- R .Wisbauer, Foundations of M odule and Ring Theory, Gorden and Breach science Publisher (1991)
- F. W. Anderson &K. R . Fuller ,Ring and Categories of M odules, New York Springer-Verlag Inc, (1973)