Academia.eduAcademia.edu

Outline

Dataset bias exposed in face verification

2019, IET Biometrics

https://doi.org/10.1049/IET-BMT.2018.5224

Abstract

Most facial verification methods assume that training and testing sets contain independent and identically distributed samples, although, in many real applications, this assumption does not hold. Whenever gathering a representative dataset in the target domain is unfeasible, it is necessary to choose one of the already available (source domain) datasets. In this paper, a study was performed over the differences among six public datasets, and how this impacts on the performance of the learned methods. In the considered scenario of mobile devices, the individual of interest is enrolled using a few facial images taken in the operational domain, while training impostors are drawn from one of the public available datasets. This work tried to shed light on the inherent differences among the datasets, and potential harms that should be considered when they are combined for training and testing. Results indicate that a drop in performance occurs whenever training and testing are done on different datasets compared to the case of using the same dataset in both phases. However, the decay strongly depends on the kind of features. Besides, the representation of samples in the feature space reveals insights into to what extent bias is an endogenous or an exogenous factor.

References (45)

  1. S. Banerjee, J. Brogan, J. Krizaj, et al. To frontal- ize or not to frontalize: Do we really need elabo- rate pre-processing to improve face recognition? In Winter Conference on Applications of Com- puter Vision (WACV), pages 20-29, March 2018.
  2. J. Buolamwini and T. Gebru. Gender shades: Intersectional accuracy disparities in commercial gender classification. In Conference on Fair- ness, Accountability and Transparency, volume 81, pages 77-91. PMLR, 2018.
  3. F. Casado, C. Regueiro, R. Iglesias, X. Pardo, and E. López. Automatic selection of user samples for a non-collaborative face verification system. In ROBOT 2017: Third Iberian Robotics Conference, pages 555-566. Springer, 2018.
  4. D. Chen, X. Cao, L. Wang, F. Wen, and J. Sun. Bayesian face revisited: A joint formulation. In A. Fitzgibbon, S. Lazebnik, P. Perona, Y. Sato, and C. Schmid, editors, Computer Vision -ECCV 2012, pages 566-579, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
  5. D. Chen, X. Cao, D. Wipf, F. Wen, and J. Sun. An efficient joint formulation for bayesian face ver- ification. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(1):32-46, Jan 2017.
  6. D. Crispell, O. Biris, N. Crosswhite, J. Byrne, and J. Mundy. Dataset augmentation for pose and lighting invariant face recognition. CoRR, abs/1704.04326, 2017.
  7. J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In Computer Vision and Pattern Recognition (CVPR), pages 248-255. IEEE, 2009.
  8. B. Fernando, A. Habrard, M. Sebban, and T. Tuytelaars. Unsupervised visual domain adap- tation using subspace alignment. In International Conference on Computer Vision (ICCV), pages 2960-2967, 2013.
  9. T. Hassner. Viewing real-world faces in 3d. In International Conference on Computer Vision (ICCV), pages 3607-3614, Dec 2013.
  10. T. Hassner, S. Harel, E. Paz, and R. Enbar. Effec- tive face frontalization in unconstrained images. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 4295-4304, June 2015.
  11. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pat- tern Recognition (CVPR), pages 770-778, June 2016.
  12. G. Hu, X. Peng, Y. Yang, T. M. Hospedales, and J. Verbeek. Frankenstein: Learning deep face rep- resentations using small data. IEEE Transactions on Image Processing, 27(1):293-303, Jan 2018.
  13. G. Huang, M. Ramesh, T. Berg, and E. Learned- Miller. Labeled faces in the wild: A database for studying face recognition in unconstrained envi- ronments. Technical report, Technical Report 07- 49, University of Massachusetts, Amherst, 2007.
  14. V. Kazemi and J. Sullivan. One millisecond face alignment with an ensemble of regression trees. In Computer Vision and Pattern Recogni- tion (CVPR), pages 1867-1874, 2014.
  15. A. Khosla, T. Zhou, T. Malisiewicz, A. Efros, and A. Torralba. Undoing the damage of dataset bias. In European Conference on Computer Vision (ECCV), pages 158-171. Springer, 2012.
  16. D. King. Dlib-ml: A machine learning toolkit. Journal of Machine Learning Research, 10(Jul):1755-1758, 2009.
  17. B. F. Klare, B. Klein, E. Taborsky, et al. Pushing the frontiers of unconstrained face detection and recognition: Iarpa janus benchmark a. In Com- puter Vision and Pattern Recognition (CVPR), pages 1931-1939, 2015.
  18. A. Kortylewski, B. Egger, A. Schneider, T. Gerig, A. Morel-Forster, and T. Vetter. Empirically an- alyzing the effect of dataset biases on deep face recognition systems. In 2018 IEEE/CVF Confer- ence on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 2174-217409, June 2018.
  19. Y. LeCun, Y. Bengio, and G. Hinton. Deep learn- ing. Nature, 521(7553):436, 2015.
  20. Z. Lei, M. Pietikäinen, and S. Z. Li. Learn- ing discriminant face descriptor. IEEE Trans- actions on Pattern Analysis and Machine Intel- ligence, 36(2):289-302, Feb 2014.
  21. Z. Luo, J. Hu, W. Deng, and H. Shen. Deep unsupervised domain adaptation for face recogni- tion. In International Conference on Automatic Face Gesture Recognition (FG 2018), pages 453- 457, May 2018.
  22. L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning Re- search, 9(Nov):2579-2605, 2008.
  23. U. Mahbub, S. Sarkar, V. M. Patel, and R. Chel- lappa. Active user authentication for smart- phones: A challenge data set and benchmark re- sults. In International Conference on Biometrics Theory, Applications and Systems (BTAS), pages 1-8, Sept 2016.
  24. N. C. Mithun, R. Panda, and A. K. Roy- Chowdhury. Generating diverse image datasets with limited labeling. In Proceedings of the 24th ACM International Conference on Multimedia, MM '16, pages 566-570, New York, NY, USA, 2016. ACM.
  25. H. Ng and S. Winkler. A data-driven approach to cleaning large face datasets. In International Con- ference on Image Processing (ICIP), pages 343- 347, Oct 2014.
  26. T. Ojala, M. Pietikainen, and T. Maenpaa. Mul- tiresolution gray-scale and rotation invariant tex- ture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence, 24(7):971-987, 2002.
  27. M. Parchami, S. Bashbaghi, and E. Granger. Video-based face recognition using ensemble of haar-like deep convolutional neural networks. In International Joint Conference on Neural Net- works (IJCNN), pages 4625-4632, 2017.
  28. O. M. Parkhi, A. Vedaldi, and A. Zisserman. Deep face recognition. In M. W. J. Xianghua Xie and G. K. L. Tam, editors, Proceedings of the British Machine Vision Conference (BMVC), pages 41.1- 41.12. BMVA Press, September 2015.
  29. P. Phillips, H. Wechsler, J. Huang, and P. J. Rauss. The feret database and evaluation pro- cedure for face-recognition algorithms. Image and Vision Computing, 16(5):295-306, 1998.
  30. A. Ratner, H. Ehrenberg, Z. Hussain, J. Dunn- mon, and C. Ré. Learning to compose domain- specific transformations for data augmentation. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, ed- itors, Advances in Neural Information Processing Systems, volume 30, pages 3236-3246. Curran As- sociates, Inc., 2017.
  31. J. Ren, X. Jiang, and J. Yuan. A complete and fully automated face verification system on mobile devices. Pattern Recognition, 46(1):45 -56, 2013.
  32. K. Saenko, B. Kulis, M. Fritz, and T. Dar- rell. Adapting visual category models to new do- mains. In European Conference on Computer Vi- sion (ECCV), pages 213-226. Springer, 2010.
  33. F. Schroff, D. Kalenichenko, and J. Philbin. Facenet: A unified embedding for face recognition and clustering. In 2015 IEEE Conference on Com- puter Vision and Pattern Recognition (CVPR), pages 815-823, June 2015.
  34. A. F. Sequeira, J. C. Monteiro, A. Rebelo, and H. P. Oliveira. Mobbio: A multimodal database captured with a portable handheld device. In Con- ference on Computer Vision Theory and Applica- tions (VISAPP), volume 3, pages 133-139, Jan 2014.
  35. K. Sohn, S. Liu, G. Zhong, X. Yu, M. Yang, and M. Chandraker. Unsupervised domain adaptation for face recognition in unlabeled videos. In Inter- national Conference on Computer Vision (ICCV), pages 5917-5925, Oct 2017.
  36. B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In Euro- pean Conference on Computer Vision Workshops (ECCVW), pages 443-450, Cham, 2016. Springer International Publishing.
  37. Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are sparse, selective, and ro- bust. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2892-2900, June 2015.
  38. T. Tommasi, N. Patricia, B. Caputo, and T. Tuytelaars. A deeper look at dataset bias. In Domain Adaptation in Computer Vision Applica- tions, pages 37-55. Springer, 2017.
  39. A. Torralba and A. A. Efros. Unbiased look at dataset bias. In Computer Vision and Pat- tern Recognition (CVPR), pages 1521-1528, June 2011.
  40. E. Tzeng, J. Hoffman, K. Saenko, and T. Darrell. Adversarial discriminative domain adaptation. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2962-2971, July 2017.
  41. P. Viola and M. Jones. Rapid object detection us- ing a boosted cascade of simple features. In Com- puter Vision and Pattern Recognition (CVPR), volume 1, pages I-I. IEEE, 2001.
  42. G. Wen, H. Chen, D. Cai, and X. He. Improving face recognition with domain adaptation. Neuro- computing, 287(C):45-51, 2018.
  43. C. Whitelam, E. Taborsky, A. Blanton, et al. Iarpa janus benchmark-b face dataset. In Com- puter Vision and Pattern Recognition Workshops (CVPRW), pages 592-600, July 2017.
  44. X. Xing, G. Xu, B. Cai, C. Qing, and X. Xu. Face verification based on feature transfer via pca-svm framework. In 2017 IEEE International Confer- ence on Internet of Things (iThings) and IEEE Green Computing and Communications (Green- Com) and IEEE Cyber, Physical and Social Com- puting (CPSCom) and IEEE Smart Data (Smart- Data), pages 1086-1091, 2017.
  45. H. Xu, J. Zheng, A. Alavi, and R. Chellappa. Cross-domain visual recognition via domain adap- tive dictionary learning. CoRR, abs/1804.04687, 2018.