Academia.eduAcademia.edu

Outline

SDFR: Synthetic Data for Face Recognition Competition

2024, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2404.04580

Abstract

Large-scale face recognition datasets are collected by crawling the Internet and without individuals' consent, raising legal, ethical, and privacy concerns. With the recent advances in generative models, recently several works proposed generating synthetic face recognition datasets to mitigate concerns in web-crawled face recognition datasets. This paper presents the summary of the Synthetic Data for Face Recognition (SDFR) Competition held in conjunction with the 18th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2024) and established to investigate the use of synthetic data for training face recognition models. The SDFR competition was split into two tasks, allowing participants to train face recognition systems using new synthetic datasets and/or existing ones. In the first task, the face recognition backbone was fixed and the dataset size was limited, while the second task provided almost complete freedom on the model backbone, the dataset, and the training pipeline. The submitted models were trained on existing and also new synthetic datasets and used clever methods to improve training with synthetic data. The submissions were evaluated and ranked on a diverse set of seven benchmarking datasets. The paper gives an overview of the submitted face recognition models and reports achieved performance compared to baseline models trained on real and synthetic datasets. Furthermore, the evaluation of submissions is extended to bias assessment across different demography groups. Lastly, an outlook on the current state of the research in training face recognition models using synthetic data is presented, and existing problems as well as potential future directions are also discussed.

References (49)

  1. The rise and fall (and rise) of datasets. Nature Machine Intelligence, 4(1):1-2, 2022.
  2. G. Bae, M. de La Gorce, T. Baltrušaitis, C. Hewitt, D. Chen, J. Valentin, R. Cipolla, and J. Shen. DigiFace-1M: 1 million digital face images for face recognition. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 3526-3535, 2023.
  3. V. N. Boddeti, G. Sreekumar, and A. Ross. On the biometric capacity of generative face models. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pages 1-10. IEEE, 2023.
  4. F. Boutros, N. Damer, J. N. Kolf, K. Raja, F. Kirchbuchner, R. Ra- machandra, A. Kuijper, P. Fang, C. Zhang, F. Wang, D. Montero, N. Aginako, B. Sierra, M. Nieto, M. E. Erakin, U. Demir, H. K. Ekenel, A. Kataoka, K. Ichikawa, S. Kubo, J. Zhang, M. He, D. Han, S. Shan, K. Grm, V. Štruc, S. Seneviratne, N. Kasthuriarachchi, S. Rasnayaka, P. C. Neto, A. F. Sequeira, J. R. Pinto, M. Saffari, and J. S. Cardoso. MFR 2021: Masked face recognition competition. In Proceedings of the IEEE International joint conference on biometrics (IJCB), pages 1-10. IEEE, 2021.
  5. F. Boutros, J. H. Grebe, A. Kuijper, and N. Damer. IDiff-Face: Synthetic-based face recognition through fizzy identity-conditioned diffusion model. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 19650-19661, 2023.
  6. F. Boutros, M. Huber, P. Siebke, T. Rieber, and N. Damer. SFace: Privacy-friendly and accurate face recognition using synthetic data. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pages 1-11. IEEE, 2022.
  7. F. Boutros, M. Klemt, M. Fang, A. Kuijper, and N. Damer. Unsuper- vised face recognition using unlabeled synthetic data. In Proceedings of the IEEE 17th International Conference on Automatic Face and Gesture Recognition (FG), pages 1-8. IEEE, 2023.
  8. F. Boutros, V. Struc, J. Fierrez, and N. Damer. Synthetic data for face recognition: Current state and future prospects. Image and Vision Computing, page 104688, 2023.
  9. Q. Cao, L. Shen, W. Xie, O. M. Parkhi, and A. Zisserman. VGGFace2: A dataset for recognising faces across pose and age. In Proceedings of the 13th IEEE International Conference on Automatic Face and Gesture Recognition (FG), pages 67-74. IEEE, 2018.
  10. S. Cheng, P. Ma, G. Tzimiropoulos, S. Petridis, A. Bulat, J. Shen, and M. Pantic. Towards pose-invariant lip-reading. In Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4357-4361. IEEE, 2020.
  11. L. Colbois, T. de Freitas Pereira, and S. Marcel. On the use of automatically generated synthetic image datasets for benchmarking face recognition. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pages 1-8. IEEE, 2021.
  12. E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le. Randaugment: Practical automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 702-703, 2020.
  13. J. Deng, J. Guo, X. An, Z. Zhu, and S. Zafeiriou. Masked face recog- nition challenge: The insightface track report. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pages 1437-1444, 2021.
  14. J. Deng, J. Guo, N. Xue, and S. Zafeiriou. ArcFace: Additive angular margin loss for deep face recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 4690- 4699, 2019.
  15. J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, and S. Shi. Lightweight face recognition challenge. In Proceedings of the IEEE/CVF Interna- tional Conference on Computer Vision Workshops (ICCVW), 2019.
  16. A. George, C. Ecabert, H. O. Shahreza, K. Kotwal, and S. Marcel. EdgeFace: Efficient face recognition model for edge devices. IEEE Transactions on Biometrics, Behavior, and Identity Science, 6(2):158- 168, 2024.
  17. Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao. MS-Celeb-1M: A dataset and benchmark for large-scale face recognition. In Proceedings of the European Conference on Computer Vision (ECCV), pages 87-102.
  18. G. B. Huang, M. Mattar, T. Berg, and E. Learned-Miller. Labeled faces in the wild: A database forstudying face recognition in unconstrained environments. In Workshop on faces in'Real-Life'Images: detection, alignment, and recognition, 2008.
  19. K. Karkkainen and J. Joo. FairFace: Face attribute dataset for balanced race, gender, and age for bias measurement and mitigation. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 1548-1558, 2021.
  20. T. Karras, M. Aittala, J. Hellsten, S. Laine, J. Lehtinen, and T. Aila. Training generative adversarial networks with limited data. Advances in Neural Information Processing Systems, 33:12104-12114, 2020.
  21. T. Karras, M. Aittala, S. Laine, E. Härkönen, J. Hellsten, J. Lehtinen, and T. Aila. Alias-free generative adversarial networks. Advances in Neural Information Processing Systems, 34:852-863, 2021.
  22. T. Karras, S. Laine, and T. Aila. A style-based generator architecture for generative adversarial networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 4401-4410, 2019.
  23. M. Kim, A. K. Jain, and X. Liu. AdaFace: Quality adaptive margin for face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 18750- 18759, 2022.
  24. M. Kim, F. Liu, A. Jain, and X. Liu. DCFace: Synthetic face generation with dual condition diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12715-12725, 2023.
  25. J. N. Kolf, F. Boutros, J. Elliesen, M. Theuerkauf, N. Damer, M. Alansari, O. A. Hay, S. Alansari, S. Javed, N. Werghi, K. Grm, V. Štruc, F. Alonso-Fernandez, K. H. Diaz, J. Bigun, A. George, C. Ecabert, H. O. Shahreza, K. Kotwal, S. Marcel, I. Medvedev, B. Jin, D. Nunes, A. Hassanpour, P. Khatiwada, A. A. Toor, and B. Yang. EFaR 2023: Efficient face recognition competition. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pages 1-12. IEEE, 2023.
  26. J. N. Kolf, T. Rieber, J. Elliesen, F. Boutros, A. Kuijper, and N. Damer. Identity-driven three-player generative adversarial network for synthetic-based face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 806-816, 2023.
  27. C. Kong, Q. Luo, and G. Chen. RSFAD: A large-scale real scenario face age dataset in the wild. In 2021 16th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2021), pages 1-7. IEEE, 2021.
  28. B. Maze, J. Adams, J. A. Duncan, N. Kalka, T. Miller, C. Otto, A. K. Jain, W. T. Niggel, J. Anderson, J. Cheney, et al. IARPA janus benchmark-c: Face dataset and protocol. In Proceedings of the International Conference on Biometrics (ICB), pages 158-165. IEEE, 2018.
  29. P. Melzi, C. Rathgeb, R. Tolosana, R. Vera-Rodriguez, D. Lawatsch, F. Domin, and M. Schaubert. GANDiffFace: Controllable generation of synthetic datasets for face recognition with realistic variations. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pages 3086-3095, 2023.
  30. P. Melzi, R. Tolosana, R. Vera-Rodriguez, M. Kim, C. Rathgeb, X. Liu, I. DeAndres-Tame, A. Morales, J. Fierrez, J. Ortega-Garcia, W. Zhao, X. Zhu, Z. Yan, X.-Y. Zhang, J. Wu, Z. Lei, S. Tripathi, M. Kothari, M. H. Zama, D. Deb, B. Biesseck, P. Vidal, R. Granada, G. Fickel, G. Führ, D. Menotti, A. Unnervik, A. George, C. Ecabert, H. O. Shahreza, P. Rahimi, S. Marcel, I. Sarridis, C. Koutlis, G. Baltsou, S. Papadopoulos, C. Diou, N. D. Domenico, G. Borghi, L. Pelle- grini, E. Mas-Candela, Ángela Sánchez-Pérez, A. Atzori, F. Boutros, N. Damer, G. Fenu, and M. Marras. FRCSyn-onGoing: Benchmarking and comprehensive evaluation of real and synthetic data to improve face recognition systems. Information Fusion, 107:102322, 2024.
  31. P. Melzi, R. Tolosana, R. Vera-Rodriguez, M. Kim, C. Rathgeb, X. Liu, I. DeAndres-Tame, A. Morales, J. Fierrez, J. Ortega-Garcia, W. Zhao, X. Zhu, Z. Yan, X.-Y. Zhang, J. Wu, Z. Lei, S. Tripathi, M. Kothari, M. H. Zama, D. Deb, B. Biesseck, P. Vidal, R. Granada, G. Fickel, G. Führ, D. Menotti, A. Unnervik, A. George, C. Ecabert, H. O. Shahreza, P. Rahimi, S. Marcel, I. Sarridis, C. Koutlis, G. Baltsou, S. Papadopoulos, C. Diou, N. D. Domenico, G. Borghi, L. Pelle- grini, E. Mas-Candela, Ángela Sánchez-Pérez, A. Atzori, F. Boutros, N. Damer, G. Fenu, and M. Marras. FRCSyn challenge at WACV 2024: Face recognition challenge in the era of synthetic data. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), pages 892-901, 2024.
  32. Q. Meng, S. Zhao, Z. Huang, and F. Zhou. MagFace: A universal representation for face recognition and quality assessment. In Pro- ceedings of the IEEE/CVF Conference on Computer Vsion and Pattern Recognition (CVPR), pages 14225-14234, 2021.
  33. S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, and S. Zafeiriou. AgeDB: the first manually collected, in-the-wild age database. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 51-59, 2017.
  34. H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, and D. Tao. SynFace: Face recognition with synthetic data. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 10880- 10890, 2021.
  35. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10684-10695, 2022.
  36. N. Ruiz, Y. Li, V. Jampani, Y. Pritch, M. Rubinstein, and K. Aberman. DreamBooth: Fine tuning text-to-image diffusion models for subject- driven generation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 22500- 22510, 2023.
  37. C. Schuhmann, R. Beaumont, R. Vencu, C. Gordon, R. Wightman, M. Cherti, T. Coombes, A. Katta, C. Mullis, M. Wortsman, et al. LAION-5B: An open large-scale dataset for training next generation image-text models. Advances in Neural Information Processing Systems, 35:25278-25294, 2022.
  38. H. O. Shahreza, A. George, and S. Marcel. SynthDistill: Face recogni- tion with knowledge distillation from synthetic data. In Proceedings of the IEEE International Joint Conference on Biometrics (IJCB), pages 1-10. IEEE, 2023.
  39. H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, and W. Liu. CosFace: Large margin cosine loss for deep face recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 5265-5274, 2018.
  40. M. Wang, W. Deng, J. Hu, X. Tao, and Y. Huang. Racial faces in the wild: Reducing racial bias by information maximization adaptation network. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pages 692-702, 2019.
  41. C. Whitelam, E. Taborsky, A. Blanton, B. Maze, J. Adams, T. Miller, N. Kalka, A. K. Jain, J. A. Duncan, K. Allen, et al. IARPA janus benchmark-b face dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 90-98, 2017.
  42. Y. Yang, Y. lin, H. Liu, W. Shao, R. Chen, H. Shang, Y. Wang, Y. Qiao, K. Zhang, and P. Luo. Towards implicit prompt for text-to-image models, 2024.
  43. D. Yi, Z. Lei, S. Liao, and S. Z. Li. Learning face representation from scratch. arXiv preprint arXiv:1411.7923, 2014.
  44. K. Zhang, Z. Zhang, Z. Li, and Y. Qiao. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Processing Letters, 23(10):1499-1503, 2016.
  45. T. Zheng and W. Deng. Cross-Pose LFW: A database for studying cross-pose face recognition in unconstrained environments. Beijing University of Posts and Telecommunications, Tech. Rep, 5(7), 2018.
  46. T. Zheng, W. Deng, and J. Hu. Cross-Age LFW: A database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197, 2017.
  47. Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang. Random erasing data augmentation. In Proceedings of the AAAI conference on Artificial Intelligence, volume 34, pages 13001-13008, 2020.
  48. X. Zhu, X. Liu, Z. Lei, and S. Z. Li. Face alignment in full pose range: A 3d total solution. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(1):78-92, 2017.
  49. Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, T. Yang, J. Lu, D. Du, et al. WebFace260M: A benchmark unveiling the power of million-scale deep face recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 10492-10502, 2021.