Search and tracking algorithms for swarms of robots: A survey
2016, Robotics and Autonomous Systems
https://doi.org/10.1016/J.ROBOT.2015.08.010Abstract
h i g h l i g h t s • Surveys algorithms applicable to swarm robotic systems for target search and tracking. • Identifies variations of the search and tracking problem addressed in the literature. • Discusses desired capabilities of search and tracking algorithms for robot swarms.
References (102)
- C.-Y. Chong, D. Garren, T. Grayson, Ground target tracking-a historical perspective, in: 2000 IEEE Aerospace Conference Proceedings, vol. 3, 2000, pp. 433-448.
- F. Viani, P. Rocca, G. Oliveri, D. Trinchero, A. Massa, Localization, tracking, and imaging of targets in wireless sensor networks: An invited review, Radio Sci. 46 (5) (2011) RS5002.
- A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Comput. Surv. 38 (4) (2006) 13.
- L. Parker, Distributed algorithms for multi-robot observation of multiple moving targets, Auton. Robots 12 (3) (2002) 231-255.
- K. Zhou, S.I. Roumeliotis, Multirobot active target tracking with combinations of relative observations, Trans. Rob. 27 (4) (2011) 678-695.
- R.C. Arkin, Behavior-based Robotics, Intelligent Robots and Autonomous Agents, MIT Press, Cambridge, Mass, 1998.
- A.J.C. Sharkey, Swarm robotics and minimalism, Connect. Sci. 19 (3) (2007) 245-260.
- A. Martinoli, Collective complexity out of individual simplicity: A review of swarm intelligence: From natural to artificial systems, by eric bonabeau, marco dorigo, and guy theraulaz, Artif. Life 7 (3) (2001) 315-319.
- E. Şahin, Swarm robotics: From sources of inspiration to domains of application, in: E. Şahin, W.M. Spears (Eds.), Swarm Robotics, in: Lecture Notes in Computer Science, vol. 3342, Springer, Berlin Heidelberg, 2005, pp. 10-20.
- Y. Tan, Z. yang Zheng, Research advance in swarm robotics, Def. Technol. 9 (1) (2013) 18-39.
- M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the swarm engineering perspective, Swarm Intell. (2013) 1-41.
- J.C. Barca, Y.A. Sekercioglu, Swarm robotics reviewed, Robotica 31 (2013) 345-359.
- I. Navarro, F. Matía, An introduction to swarm robotics, ISRN Robot. (2013).
- Y. Mohan, S.G. Ponnambalam, An extensive review of research in swarm robotics, in: World Congress on Nature Biologically Inspired Computing, 2009. NaBIC 2009, 2009, pp. 140-145.
- L. Bayindir, E. Şahin, A review of studies in swarm robotics, Turk. J. Electr. Eng. Comput. Sci. 15 (2) (2007) 115-147.
- G. Beni, From swarm intelligence to swarm robotics, in: E. Şahin, W.M. Spears (Eds.), Swarm Robotics, in: Lecture Notes in Computer Science, vol. 3342, Springer, Berlin Heidelberg, 2005, pp. 1-9.
- G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in: Proceed. NATO Advanced Workshop on Robots and Biological Systems, 1989.
- T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss, Self organizing robots based on cell structures-cebot, in: IEEE International Workshop on Intelligent Robots, 1988, 1988, pp. 145-150.
- T. Fukuda, Y. Kawauchi, Cellular robotic system (cebot) as one of the realization of self-organizing intelligent universal manipulator, in: 1990 IEEE International Conference on Robotics and Automation, 1990, Proceedings, vol.1, 1990, pp. 662-667.
- A.J. Sharkey, N. Sharkey, The application of swarm intelligence to collective robots, in: J. Fulcher (Ed.), Advances in Applied Artificial Intelligence, IGI Global, 2006, pp. 157-185.
- M. Shimizu, A. Ishiguro, A self-reconfigurable robotic system that exhibits amoebic locomotion, in: IEEE/ICME International Conference on Complex Medical Engineering, 2007. CME 2007, 2007, pp. 101-106.
- M. Shimizu, A. Ishiguro, An amoeboid modular robot that exhibits real- time adaptive reconfiguration, in: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 1496-1501.
- H. Chung, S. Oh, D. Shim, S. Sastry, Toward robotic sensor webs: Algorithms, systems, and experiments, Proc. IEEE 99 (9) (2011) 1562-1586.
- M. Yogeswaran, S.G. Ponnambalam, Swarm Robotics: An Extensive Research Review, in: I. Fuerstner (Ed.), Advanced Knowledge Application in Practice, InTech, 2010, Ch. 14.
- B. Jung, Cooperative target tracking using mobile robots, Ph.D. thesis University of Southern California, Los Angeles, CA, USA, 2005, aAI3180426.
- F. Armaghani, I. Gondal, J. Kamruzzaman, D. Green, Dynamic clusters graph for detecting moving targets using wsns, in: 2012 IEEE Vehicular Technology Conference (VTC Fall), 2012, pp. 1-5.
- J.J. Faria, E.A. Codling, J.R. Dyer, F. Trillmich, J. Krause, Navigation in human crowds; testing the many-wrongs principle, Anim. Behav. 78 (3) (2009) 587-591.
- J. Krause, G.D. Ruxton, S. Krause, Swarm intelligence in animals and humans, Trends Ecol. Evol. 25 (1) (2010) 28-34.
- C. Li, S. Yang, A clustering particle swarm optimizer for dynamic optimization, in: IEEE Congress on Evolutionary Computation, 2009. CEC'09, 2009, pp. 439-446.
- S. Yang, C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput. 14 (6) (2010) 959-974.
- K. Derr, M. Manic, Multi-robot, multi-target particle swarm optimization search in noisy wireless environments, in: 2nd Conference on Human System Interactions, 2009. HSI'09, 2009, pp. 81-86.
- J. Pugh, A. Martinoli, Inspiring and modeling multi-robot search with particle swarm optimization, in: Swarm Intelligence Symposium, 2007, SIS 2007, IEEE, 2007, pp. 332-339.
- A. Jevtić, P. Gazi, D. Andina, M. Jamshidi, Building a swarm of robotic bees, in: World Automation Congress (WAC), 2010, 2010, pp. 1-6.
- A. Jevtić, A. Gutierrez, D. Andina, M. Jamshidi, Distributed bees algorithm for task allocation in swarm of robots, IEEE Syst. J. 6 (2) (2012) 296-304.
- G. Lee, N. Chong, H. Christensen, Tracking multiple moving targets with swarms of mobile robots, Intell. Serv. Robot. 3 (2010) 61-72.
- K. Krishnanand, D. Ghose, Chasing multiple mobile signal sources: A glowworm swarm optimization approach, in: Proceedings of the 3rd Indian International Conference on Artificial Intelligence (IICAI-07), Pune, India, 2007, pp. 1308-1327.
- T. Kirubarajan, Y. Bar-Shalom, Y. Wang, Passive ranging of a low observable ballistic missile in a gravitational field, IEEE Trans. Aerosp. Electron. Syst. 37 (2) (2001) 481-494.
- J. Spletzer, C. Taylor, Dynamic sensor planning and control for optimally tracking targets, Int. J. Robot. Res. 22 (1) (2003) 7-20.
- B. Jung, G.S. Sukhatme, Detecting moving objects using a single camera on a mobile robot in an outdoor environment, in: International Conference on Intelligent Autonomous Systems, The Netherlands, 2004, pp. 980-987.
- D. Montemerlo, S. Thrun, W. Whittaker, Conditional particle filters for simultaneous mobile robot localization and people-tracking, in: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA'02, vol. 1, 2002, pp. 695-701.
- M. Powers, R. Ravichandran, F. Dellaert, T. Balch, Improving multirobot multitarget tracking by communicating negative information, in: L. Parker, F. Schneider, A. Schultz (Eds.), Multi-Robot Systems, in: From Swarms to Intelligent Automata, vol. III, Springer, Netherlands, 2005, pp. 107-117.
- Z. Yan, N. Jouandeau, A. Ali Cherif, A survey and analysis of multi-robot coordination, Int. J. Adv. Robot. Syst. 10 (399) (2013).
- B.P. Gerkey, M.J. Matarić, A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robot. Res. 23 (9) (2004) 939-954.
- L.E. Parker, Multiple mobile robot teams, path planning and motion coordination, in: R.A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2009, pp. 5783-5800.
- A. Banharnsakun, T. Achalakul, R. Batra, Target finding and obstacle avoidance algorithm for microrobot swarms, in: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, pp. 1610-1615.
- D. Michel, K. McIsaac, New path planning scheme for complete coverage of mapped areas by single and multiple robots, in: 2012 International Conference on Mechatronics and Automation (ICMA), 2012, pp. 1233-1240.
- M. Kapanoglu, M. Alikalfa, M. Ozkan, A. Yazıcı, O. Parlaktuna, A pattern- based genetic algorithm for multi-robot coverage path planning minimizing completion time, J. Intell. Manuf. 23 (4) (2012) 1035-1045.
- L. Parker, Decision making as optimization in multi-robot teams, in: R. Ra- manujam, S. Ramaswamy (Eds.), Distributed Computing and Internet Tech- nology, in: Lecture Notes in Computer Science, vol. 7154, Springer, Berlin Heidelberg, 2012, pp. 35-49.
- R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS'95, 1995, pp. 39-43.
- J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE Interna- tional Conference on Neural Networks, 1995. Proceedings, vol. 4, 1995, pp. 1942-1948.
- R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, 2001, pp. 81-86.
- Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, 1998, pp. 69-73.
- W. Jatmiko, K. Sekiyama, T. Fukuda, A pso-based mobile sensor network for odor source localization in dynamic environment: Theory, simulation and measurement, in: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, 2006, pp. 1036-1043.
- X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization, in: K. Deb (Ed.), Genetic and Evolutionary Computation, GECCO 2004, in: Lecture Notes in Computer Science, vol. 3102, Springer, Berlin Heidelberg, 2004, pp. 105-116.
- R. Brits, A.P. Engelbrecht, F.V.D. Bergh, A niching particle swarm optimizer, in: Proceedings of the Conference on Simulated Evolution And Learning, 2002, pp. 692-696.
- D. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi, The bees algorithm-a novel tool for complex optimisation problems, in: D. Pham, E. Eldukhri, A. Soroka (Eds.), Intelligent Production Machines and Systems, Elsevier Science Ltd., Oxford, 2006, pp. 454-459.
- D. Karaboga, An idea based on honey bee swarm for numerical optimization, Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineer- ing Department, 2005, Oct..
- D. Karaboga, Artificial bee colony algorithm, Scholarpedia 5 (3) (2010) 6915.
- Q. Ma, X. Lei, Dynamic path planning of mobile robots based on ABC algorithm, in: F. Wang, H. Deng, Y. Gao, J. Lei (Eds.), Artificial Intelligence and Computational Intelligence, in: Lecture Notes in Computer Science, vol. 6320, Springer, Berlin Heidelberg, 2010, pp. 267-274.
- X. Cai, Y. Li, T. Wu, Dynamic path planning of mobile robots in uncertain environments based on pso and receding horizon optimization, Bull. Sci. Technol. 24 (2) (2008) 260-265.
- M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization, Artif. Life 5 (2) (1999) 137-172.
- M. Dorigo, G. Di Caro, New Ideas in Optimization, McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999, pp. 11-32. Ch. The Ant Colony Optimization Meta-heuristic.
- N. Hoff, A. Sagoff, R.J. Wood, R. Nagpal, Two foraging algorithms for robot swarms using only local communication, in: ROBIO, 2010, pp. 123-130.
- Y. Zou, D. Luo, A modified ant colony algorithm used for multi-robot odor source localization, in: D.-S. Huang, I. Wunsch, C. Donald, D. Levine, K.- H. Jo (Eds.), Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, in: Lecture Notes in Computer Science, vol. 5227, Springer, Berlin Heidelberg, 2008, pp. 502-509.
- Y. Zou, D. Luo, W. Chen, Swarm robotic odor source localization using ant colony algorithm, in: IEEE International Conference on Control and Automation, 2009. ICCA 2009, 2009, pp. 792-796.
- X. Feng, Y. Liang, L. Jiao, Bio-inspired optimisation approach for data association in target tracking, Int. J. Wirel. Mob. Comput. 6 (3) (2013) 299-304.
- M. Dorigo, L. Gambardella, Ant colonies for the traveling salesman problem, BioSystems 43 (1997) 73-81.
- K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22 (3) (2002) 52-67. cited By (since 1996) 863.
- C. Sierakowski, L.S. Coelho, Path planning optimization for mobile robots based on bacteria colony approach, in: A. Abraham, B. de Baets, M. Köppen, B. Nickolay (Eds.), Applied Soft Computing Technologies: The Challenge of Complexity, in: Advances in Soft Computing, vol. 34, Springer, Berlin Heidelberg, 2006, pp. 187-198.
- M. Turduev, M. Kirtay, P. Sousa, V. Gazi, L. Marques, Chemical concentration map building through bacterial foraging optimization based search algorithm by mobile robots, in: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 2010, pp. 3242-3249.
- K.N. Krishnanand, D. Ghose, Detection of multiple source locations using a glowworm metaphor with applications to collective robotics, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, 2005, pp. 84-91.
- K. Mcgill, S. Taylor, Robot algorithms for localization of multiple emission sources, ACM Comput. Surv. 43 (3) (2011) 15:1-15:25.
- K.N. Krishnanand, P. Amruth, M.H. Guruprasad, S. Bidargaddi, D. Ghose, Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources, in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, pp. 958-963.
- K. Krishnanand, D. Ghose, A glowworm swarm optimization based multi- robot system for signal source localization, in: D. Liu, L. Wang, K. Tan (Eds.), Design and Control of Intelligent Robotic Systems, in: Studies in Computational Intelligence, vol. 177, Springer, Berlin Heidelberg, 2009, pp. 49-68.
- X.S. Yang, Firefly algorithm, in: Nature-Inspired Metaheuristic Algorithms, 2008, pp. 79-90.
- X. Yang, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78-84.
- X. Yang, X. He, Firefly algorithm: recent advances and applications, Int. J. Swarm Intell. 1 (1) (2013) 36-50.
- I. Fister, I. Fister Jr., X.-S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm Evol. Comput. 13 (1) (2013) 34-46.
- C. Liu, Z. Gao, W. Zhao, A new path planning method based on firefly algorithm, in: Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization, CSO 2012, IEEE, Harbin, Heilongjiang, China, 2012, pp. 775-778.
- G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, A modified firefly algorithm for ucav path planning, Int. J. Hybrid Inf. Technol. 5 (3) (2012) 123-144.
- A.A. Abshouri, M.R. Meybodi, A. Bakhtiary, New firefly algorithm based on multi swarm & learning automata in dynamic environments, in: IEEE proceedings of the Third International Conference on Signal Processing Systems, ICSPS 2011, Yantai, China, 2011, pp. 73-77.
- S.M. Farahani, B. Nasiri, M.R. Meybodi, A multiswarm based firefly algorithm in dynamic environments, in: Third Int. Conference on Signal Processing Systems, ICSPS 2011, Yantai, China, 2011, pp. 68-72.
- N. Chai-ead, P. Aungkulanon, P. Luangpaiboon, Bees and firefly algorithms for noisy non-linear optimisation problems, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS 2011, vol. 2, Hong Kong, 2011, pp. 1449-1454.
- B. Nasiri, M.R. Meybodi, Speciation-based firefly algorithm for optimization in dynamic environments, Int. J. Artif. Intell. 8 (S12) (2012) 118-132.
- I. Moser, R. Chiong, Dynamic function optimization: The moving peaks benchmark, in: E. Alba, A. Nakib, P. Siarry (Eds.), Metaheuristics for Dynamic Optimization, in: Studies in Computational Intelligence, vol. 433, Springer, Berlin Heidelberg, 2013, pp. 35-59.
- W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol. 9 (2) (1980) 147-177.
- A. Dhariwal, G. Sukhatme, A.A.G. Requicha, Bacterium-inspired robots for environmental monitoring, in: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04, vol. 2, 2004, pp. 1436-1443.
- Z. Wang, D. Gu, Cooperative target tracking control of multiple robots, IEEE Trans. Ind. Electron. 59 (8) (2012) 3232-3240.
- R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. 82 (1960) 35-45. Series D.
- J. Ota, T. Arai, Y. Yoshimura, N. Miyata, E. Yoshida, D. Kurabayashi, J. Sasaki, Motion planning of multiple mobile robots by a combination of learned visibility graphs and virtual impedance, Adv. Robot. 10 (6) (1995) 605-620.
- X.-S. Yang, Metaheuristic optimization: Algorithm analysis and open problems, in: P.M. Pardalos, S. Rebennack (Eds.), Experimental Algorithms, in: Lecture Notes in Computer Science, vol. 6630, Springer, Berlin Heidelberg, 2011, pp. 21-32.
- V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, 1984.
- K. McGill, S. Taylor, Comparing swarm algorithms for multi-source local- ization, in: 2009 IEEE International Workshop on Safety, Security Rescue Robotics, SSRR, 2009, pp. 1-7.
- K. McGill, S. Taylor, Comparing swarm algorithms for large scale multi-source localization, in: IEEE International Conference on Technologies for Practical Robot Applications, 2009. TePRA 2009, 2009, pp. 48-54.
- N.E. Humphries, N. Queiroz, J.R. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W. Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D. Houghton, G.C. Hays, C.S. Jones, L.R. Noble, V.J. Wearmouth, E.J. Southall, D.W. Sims, Environmental context explains lévy and brownian movement patterns of marine predators, Nature 465 (7301) (2010) 1066-1069.
- N.E. Humphries, H. Weimerskirch, N. Queiroz, E.J. Southall, D.W. Sims, Foraging success of biological Lévy flights recorded in situ, Proc. Natl. Acad. Sci. 109 (2012) 7169-7174.
- Y. Zhou, Y. Wang, S. He, J. Wu, A novel double glowworm swarm co-evolution optimization algorithm based lévy flights, Appl. Math. Inf. Sci. 8 (1L) (2014) 355-361.
- X.-S. Yang, Firefly algorithm, lévy flights and global optimization, in: M. Bramer, R. Ellis, M. Petridis (Eds.), Research and Development in Intelligent Systems XXVI, Springer, London, 2010, pp. 209-218.
- J. Xie, Y. Zhou, H. Chen, A novel bat algorithm based on differential operator and lévy flights trajectory, Comput. Intell. Neurosci. (2013).
- D.K. Sutantyo, S. Kernbach, V.A. Nepomnyashchikh, P. Levi, Multi-robot searching algorithm using lévy flight and artificial potential field, CoRR.
- D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation, Trans. Evol. Comput. 10 (4) (2006) 440-458.
- G.J. Barlow, Improving memory for optimization and learning in dynamic environments (Ph.D. thesis), Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2011, July.