Academia.eduAcademia.edu

Outline

Search and tracking algorithms for swarms of robots: A survey

2016, Robotics and Autonomous Systems

https://doi.org/10.1016/J.ROBOT.2015.08.010

Abstract

h i g h l i g h t s • Surveys algorithms applicable to swarm robotic systems for target search and tracking. • Identifies variations of the search and tracking problem addressed in the literature. • Discusses desired capabilities of search and tracking algorithms for robot swarms.

References (102)

  1. C.-Y. Chong, D. Garren, T. Grayson, Ground target tracking-a historical perspective, in: 2000 IEEE Aerospace Conference Proceedings, vol. 3, 2000, pp. 433-448.
  2. F. Viani, P. Rocca, G. Oliveri, D. Trinchero, A. Massa, Localization, tracking, and imaging of targets in wireless sensor networks: An invited review, Radio Sci. 46 (5) (2011) RS5002.
  3. A. Yilmaz, O. Javed, M. Shah, Object tracking: A survey, ACM Comput. Surv. 38 (4) (2006) 13.
  4. L. Parker, Distributed algorithms for multi-robot observation of multiple moving targets, Auton. Robots 12 (3) (2002) 231-255.
  5. K. Zhou, S.I. Roumeliotis, Multirobot active target tracking with combinations of relative observations, Trans. Rob. 27 (4) (2011) 678-695.
  6. R.C. Arkin, Behavior-based Robotics, Intelligent Robots and Autonomous Agents, MIT Press, Cambridge, Mass, 1998.
  7. A.J.C. Sharkey, Swarm robotics and minimalism, Connect. Sci. 19 (3) (2007) 245-260.
  8. A. Martinoli, Collective complexity out of individual simplicity: A review of swarm intelligence: From natural to artificial systems, by eric bonabeau, marco dorigo, and guy theraulaz, Artif. Life 7 (3) (2001) 315-319.
  9. E. Şahin, Swarm robotics: From sources of inspiration to domains of application, in: E. Şahin, W.M. Spears (Eds.), Swarm Robotics, in: Lecture Notes in Computer Science, vol. 3342, Springer, Berlin Heidelberg, 2005, pp. 10-20.
  10. Y. Tan, Z. yang Zheng, Research advance in swarm robotics, Def. Technol. 9 (1) (2013) 18-39.
  11. M. Brambilla, E. Ferrante, M. Birattari, M. Dorigo, Swarm robotics: a review from the swarm engineering perspective, Swarm Intell. (2013) 1-41.
  12. J.C. Barca, Y.A. Sekercioglu, Swarm robotics reviewed, Robotica 31 (2013) 345-359.
  13. I. Navarro, F. Matía, An introduction to swarm robotics, ISRN Robot. (2013).
  14. Y. Mohan, S.G. Ponnambalam, An extensive review of research in swarm robotics, in: World Congress on Nature Biologically Inspired Computing, 2009. NaBIC 2009, 2009, pp. 140-145.
  15. L. Bayindir, E. Şahin, A review of studies in swarm robotics, Turk. J. Electr. Eng. Comput. Sci. 15 (2) (2007) 115-147.
  16. G. Beni, From swarm intelligence to swarm robotics, in: E. Şahin, W.M. Spears (Eds.), Swarm Robotics, in: Lecture Notes in Computer Science, vol. 3342, Springer, Berlin Heidelberg, 2005, pp. 1-9.
  17. G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in: Proceed. NATO Advanced Workshop on Robots and Biological Systems, 1989.
  18. T. Fukuda, S. Nakagawa, Y. Kawauchi, M. Buss, Self organizing robots based on cell structures-cebot, in: IEEE International Workshop on Intelligent Robots, 1988, 1988, pp. 145-150.
  19. T. Fukuda, Y. Kawauchi, Cellular robotic system (cebot) as one of the realization of self-organizing intelligent universal manipulator, in: 1990 IEEE International Conference on Robotics and Automation, 1990, Proceedings, vol.1, 1990, pp. 662-667.
  20. A.J. Sharkey, N. Sharkey, The application of swarm intelligence to collective robots, in: J. Fulcher (Ed.), Advances in Applied Artificial Intelligence, IGI Global, 2006, pp. 157-185.
  21. M. Shimizu, A. Ishiguro, A self-reconfigurable robotic system that exhibits amoebic locomotion, in: IEEE/ICME International Conference on Complex Medical Engineering, 2007. CME 2007, 2007, pp. 101-106.
  22. M. Shimizu, A. Ishiguro, An amoeboid modular robot that exhibits real- time adaptive reconfiguration, in: Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS'09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 1496-1501.
  23. H. Chung, S. Oh, D. Shim, S. Sastry, Toward robotic sensor webs: Algorithms, systems, and experiments, Proc. IEEE 99 (9) (2011) 1562-1586.
  24. M. Yogeswaran, S.G. Ponnambalam, Swarm Robotics: An Extensive Research Review, in: I. Fuerstner (Ed.), Advanced Knowledge Application in Practice, InTech, 2010, Ch. 14.
  25. B. Jung, Cooperative target tracking using mobile robots, Ph.D. thesis University of Southern California, Los Angeles, CA, USA, 2005, aAI3180426.
  26. F. Armaghani, I. Gondal, J. Kamruzzaman, D. Green, Dynamic clusters graph for detecting moving targets using wsns, in: 2012 IEEE Vehicular Technology Conference (VTC Fall), 2012, pp. 1-5.
  27. J.J. Faria, E.A. Codling, J.R. Dyer, F. Trillmich, J. Krause, Navigation in human crowds; testing the many-wrongs principle, Anim. Behav. 78 (3) (2009) 587-591.
  28. J. Krause, G.D. Ruxton, S. Krause, Swarm intelligence in animals and humans, Trends Ecol. Evol. 25 (1) (2010) 28-34.
  29. C. Li, S. Yang, A clustering particle swarm optimizer for dynamic optimization, in: IEEE Congress on Evolutionary Computation, 2009. CEC'09, 2009, pp. 439-446.
  30. S. Yang, C. Li, A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments, IEEE Trans. Evol. Comput. 14 (6) (2010) 959-974.
  31. K. Derr, M. Manic, Multi-robot, multi-target particle swarm optimization search in noisy wireless environments, in: 2nd Conference on Human System Interactions, 2009. HSI'09, 2009, pp. 81-86.
  32. J. Pugh, A. Martinoli, Inspiring and modeling multi-robot search with particle swarm optimization, in: Swarm Intelligence Symposium, 2007, SIS 2007, IEEE, 2007, pp. 332-339.
  33. A. Jevtić, P. Gazi, D. Andina, M. Jamshidi, Building a swarm of robotic bees, in: World Automation Congress (WAC), 2010, 2010, pp. 1-6.
  34. A. Jevtić, A. Gutierrez, D. Andina, M. Jamshidi, Distributed bees algorithm for task allocation in swarm of robots, IEEE Syst. J. 6 (2) (2012) 296-304.
  35. G. Lee, N. Chong, H. Christensen, Tracking multiple moving targets with swarms of mobile robots, Intell. Serv. Robot. 3 (2010) 61-72.
  36. K. Krishnanand, D. Ghose, Chasing multiple mobile signal sources: A glowworm swarm optimization approach, in: Proceedings of the 3rd Indian International Conference on Artificial Intelligence (IICAI-07), Pune, India, 2007, pp. 1308-1327.
  37. T. Kirubarajan, Y. Bar-Shalom, Y. Wang, Passive ranging of a low observable ballistic missile in a gravitational field, IEEE Trans. Aerosp. Electron. Syst. 37 (2) (2001) 481-494.
  38. J. Spletzer, C. Taylor, Dynamic sensor planning and control for optimally tracking targets, Int. J. Robot. Res. 22 (1) (2003) 7-20.
  39. B. Jung, G.S. Sukhatme, Detecting moving objects using a single camera on a mobile robot in an outdoor environment, in: International Conference on Intelligent Autonomous Systems, The Netherlands, 2004, pp. 980-987.
  40. D. Montemerlo, S. Thrun, W. Whittaker, Conditional particle filters for simultaneous mobile robot localization and people-tracking, in: IEEE International Conference on Robotics and Automation, 2002. Proceedings. ICRA'02, vol. 1, 2002, pp. 695-701.
  41. M. Powers, R. Ravichandran, F. Dellaert, T. Balch, Improving multirobot multitarget tracking by communicating negative information, in: L. Parker, F. Schneider, A. Schultz (Eds.), Multi-Robot Systems, in: From Swarms to Intelligent Automata, vol. III, Springer, Netherlands, 2005, pp. 107-117.
  42. Z. Yan, N. Jouandeau, A. Ali Cherif, A survey and analysis of multi-robot coordination, Int. J. Adv. Robot. Syst. 10 (399) (2013).
  43. B.P. Gerkey, M.J. Matarić, A formal analysis and taxonomy of task allocation in multi-robot systems, Int. J. Robot. Res. 23 (9) (2004) 939-954.
  44. L.E. Parker, Multiple mobile robot teams, path planning and motion coordination, in: R.A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science, Springer, New York, 2009, pp. 5783-5800.
  45. A. Banharnsakun, T. Achalakul, R. Batra, Target finding and obstacle avoidance algorithm for microrobot swarms, in: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), 2012, pp. 1610-1615.
  46. D. Michel, K. McIsaac, New path planning scheme for complete coverage of mapped areas by single and multiple robots, in: 2012 International Conference on Mechatronics and Automation (ICMA), 2012, pp. 1233-1240.
  47. M. Kapanoglu, M. Alikalfa, M. Ozkan, A. Yazıcı, O. Parlaktuna, A pattern- based genetic algorithm for multi-robot coverage path planning minimizing completion time, J. Intell. Manuf. 23 (4) (2012) 1035-1045.
  48. L. Parker, Decision making as optimization in multi-robot teams, in: R. Ra- manujam, S. Ramaswamy (Eds.), Distributed Computing and Internet Tech- nology, in: Lecture Notes in Computer Science, vol. 7154, Springer, Berlin Heidelberg, 2012, pp. 35-49.
  49. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. MHS'95, 1995, pp. 39-43.
  50. J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE Interna- tional Conference on Neural Networks, 1995. Proceedings, vol. 4, 1995, pp. 1942-1948.
  51. R. Eberhart, Y. Shi, Particle swarm optimization: developments, applications and resources, in: Proceedings of the 2001 Congress on Evolutionary Computation, 2001, vol. 1, 2001, pp. 81-86.
  52. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: The 1998 IEEE International Conference on Evolutionary Computation Proceedings, 1998. IEEE World Congress on Computational Intelligence, 1998, pp. 69-73.
  53. W. Jatmiko, K. Sekiyama, T. Fukuda, A pso-based mobile sensor network for odor source localization in dynamic environment: Theory, simulation and measurement, in: IEEE Congress on Evolutionary Computation, 2006. CEC 2006, 2006, pp. 1036-1043.
  54. X. Li, Adaptively choosing neighbourhood bests using species in a particle swarm optimizer for multimodal function optimization, in: K. Deb (Ed.), Genetic and Evolutionary Computation, GECCO 2004, in: Lecture Notes in Computer Science, vol. 3102, Springer, Berlin Heidelberg, 2004, pp. 105-116.
  55. R. Brits, A.P. Engelbrecht, F.V.D. Bergh, A niching particle swarm optimizer, in: Proceedings of the Conference on Simulated Evolution And Learning, 2002, pp. 692-696.
  56. D. Pham, A. Ghanbarzadeh, E. Koç, S. Otri, S. Rahim, M. Zaidi, The bees algorithm-a novel tool for complex optimisation problems, in: D. Pham, E. Eldukhri, A. Soroka (Eds.), Intelligent Production Machines and Systems, Elsevier Science Ltd., Oxford, 2006, pp. 454-459.
  57. D. Karaboga, An idea based on honey bee swarm for numerical optimization, Tech. Rep. TR06, Erciyes University, Engineering Faculty, Computer Engineer- ing Department, 2005, Oct..
  58. D. Karaboga, Artificial bee colony algorithm, Scholarpedia 5 (3) (2010) 6915.
  59. Q. Ma, X. Lei, Dynamic path planning of mobile robots based on ABC algorithm, in: F. Wang, H. Deng, Y. Gao, J. Lei (Eds.), Artificial Intelligence and Computational Intelligence, in: Lecture Notes in Computer Science, vol. 6320, Springer, Berlin Heidelberg, 2010, pp. 267-274.
  60. X. Cai, Y. Li, T. Wu, Dynamic path planning of mobile robots in uncertain environments based on pso and receding horizon optimization, Bull. Sci. Technol. 24 (2) (2008) 260-265.
  61. M. Dorigo, G. Di Caro, L.M. Gambardella, Ant algorithms for discrete optimization, Artif. Life 5 (2) (1999) 137-172.
  62. M. Dorigo, G. Di Caro, New Ideas in Optimization, McGraw-Hill Ltd., UK, Maidenhead, UK, England, 1999, pp. 11-32. Ch. The Ant Colony Optimization Meta-heuristic.
  63. N. Hoff, A. Sagoff, R.J. Wood, R. Nagpal, Two foraging algorithms for robot swarms using only local communication, in: ROBIO, 2010, pp. 123-130.
  64. Y. Zou, D. Luo, A modified ant colony algorithm used for multi-robot odor source localization, in: D.-S. Huang, I. Wunsch, C. Donald, D. Levine, K.- H. Jo (Eds.), Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, in: Lecture Notes in Computer Science, vol. 5227, Springer, Berlin Heidelberg, 2008, pp. 502-509.
  65. Y. Zou, D. Luo, W. Chen, Swarm robotic odor source localization using ant colony algorithm, in: IEEE International Conference on Control and Automation, 2009. ICCA 2009, 2009, pp. 792-796.
  66. X. Feng, Y. Liang, L. Jiao, Bio-inspired optimisation approach for data association in target tracking, Int. J. Wirel. Mob. Comput. 6 (3) (2013) 299-304.
  67. M. Dorigo, L. Gambardella, Ant colonies for the traveling salesman problem, BioSystems 43 (1997) 73-81.
  68. K. Passino, Biomimicry of bacterial foraging for distributed optimization and control, IEEE Control Syst. Mag. 22 (3) (2002) 52-67. cited By (since 1996) 863.
  69. C. Sierakowski, L.S. Coelho, Path planning optimization for mobile robots based on bacteria colony approach, in: A. Abraham, B. de Baets, M. Köppen, B. Nickolay (Eds.), Applied Soft Computing Technologies: The Challenge of Complexity, in: Advances in Soft Computing, vol. 34, Springer, Berlin Heidelberg, 2006, pp. 187-198.
  70. M. Turduev, M. Kirtay, P. Sousa, V. Gazi, L. Marques, Chemical concentration map building through bacterial foraging optimization based search algorithm by mobile robots, in: 2010 IEEE International Conference on Systems Man and Cybernetics (SMC), 2010, pp. 3242-3249.
  71. K.N. Krishnanand, D. Ghose, Detection of multiple source locations using a glowworm metaphor with applications to collective robotics, in: Proceedings 2005 IEEE Swarm Intelligence Symposium, 2005. SIS 2005, 2005, pp. 84-91.
  72. K. Mcgill, S. Taylor, Robot algorithms for localization of multiple emission sources, ACM Comput. Surv. 43 (3) (2011) 15:1-15:25.
  73. K.N. Krishnanand, P. Amruth, M.H. Guruprasad, S. Bidargaddi, D. Ghose, Glowworm-inspired robot swarm for simultaneous taxis towards multiple radiation sources, in: Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006, 2006, pp. 958-963.
  74. K. Krishnanand, D. Ghose, A glowworm swarm optimization based multi- robot system for signal source localization, in: D. Liu, L. Wang, K. Tan (Eds.), Design and Control of Intelligent Robotic Systems, in: Studies in Computational Intelligence, vol. 177, Springer, Berlin Heidelberg, 2009, pp. 49-68.
  75. X.S. Yang, Firefly algorithm, in: Nature-Inspired Metaheuristic Algorithms, 2008, pp. 79-90.
  76. X. Yang, Firefly algorithm, stochastic test functions and design optimisation, Int. J. Bio-Inspired Comput. 2 (2) (2010) 78-84.
  77. X. Yang, X. He, Firefly algorithm: recent advances and applications, Int. J. Swarm Intell. 1 (1) (2013) 36-50.
  78. I. Fister, I. Fister Jr., X.-S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm Evol. Comput. 13 (1) (2013) 34-46.
  79. C. Liu, Z. Gao, W. Zhao, A new path planning method based on firefly algorithm, in: Proceedings of the 2012 Fifth International Joint Conference on Computational Sciences and Optimization, CSO 2012, IEEE, Harbin, Heilongjiang, China, 2012, pp. 775-778.
  80. G. Wang, L. Guo, H. Duan, L. Liu, H. Wang, A modified firefly algorithm for ucav path planning, Int. J. Hybrid Inf. Technol. 5 (3) (2012) 123-144.
  81. A.A. Abshouri, M.R. Meybodi, A. Bakhtiary, New firefly algorithm based on multi swarm & learning automata in dynamic environments, in: IEEE proceedings of the Third International Conference on Signal Processing Systems, ICSPS 2011, Yantai, China, 2011, pp. 73-77.
  82. S.M. Farahani, B. Nasiri, M.R. Meybodi, A multiswarm based firefly algorithm in dynamic environments, in: Third Int. Conference on Signal Processing Systems, ICSPS 2011, Yantai, China, 2011, pp. 68-72.
  83. N. Chai-ead, P. Aungkulanon, P. Luangpaiboon, Bees and firefly algorithms for noisy non-linear optimisation problems, in: Proceedings of the International MultiConference of Engineers and Computer Scientists, IMECS 2011, vol. 2, Hong Kong, 2011, pp. 1449-1454.
  84. B. Nasiri, M.R. Meybodi, Speciation-based firefly algorithm for optimization in dynamic environments, Int. J. Artif. Intell. 8 (S12) (2012) 118-132.
  85. I. Moser, R. Chiong, Dynamic function optimization: The moving peaks benchmark, in: E. Alba, A. Nakib, P. Siarry (Eds.), Metaheuristics for Dynamic Optimization, in: Studies in Computational Intelligence, vol. 433, Springer, Berlin Heidelberg, 2013, pp. 35-59.
  86. W. Alt, Biased random walk models for chemotaxis and related diffusion approximations, J. Math. Biol. 9 (2) (1980) 147-177.
  87. A. Dhariwal, G. Sukhatme, A.A.G. Requicha, Bacterium-inspired robots for environmental monitoring, in: 2004 IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA'04, vol. 2, 2004, pp. 1436-1443.
  88. Z. Wang, D. Gu, Cooperative target tracking control of multiple robots, IEEE Trans. Ind. Electron. 59 (8) (2012) 3232-3240.
  89. R.E. Kalman, A new approach to linear filtering and prediction problems, Trans. ASME J. Basic Eng. 82 (1960) 35-45. Series D.
  90. J. Ota, T. Arai, Y. Yoshimura, N. Miyata, E. Yoshida, D. Kurabayashi, J. Sasaki, Motion planning of multiple mobile robots by a combination of learned visibility graphs and virtual impedance, Adv. Robot. 10 (6) (1995) 605-620.
  91. X.-S. Yang, Metaheuristic optimization: Algorithm analysis and open problems, in: P.M. Pardalos, S. Rebennack (Eds.), Experimental Algorithms, in: Lecture Notes in Computer Science, vol. 6630, Springer, Berlin Heidelberg, 2011, pp. 21-32.
  92. V. Braitenberg, Vehicles: Experiments in Synthetic Psychology, MIT Press, Cambridge, 1984.
  93. K. McGill, S. Taylor, Comparing swarm algorithms for multi-source local- ization, in: 2009 IEEE International Workshop on Safety, Security Rescue Robotics, SSRR, 2009, pp. 1-7.
  94. K. McGill, S. Taylor, Comparing swarm algorithms for large scale multi-source localization, in: IEEE International Conference on Technologies for Practical Robot Applications, 2009. TePRA 2009, 2009, pp. 48-54.
  95. N.E. Humphries, N. Queiroz, J.R. Dyer, N.G. Pade, M.K. Musyl, K.M. Schaefer, D.W. Fuller, J.M. Brunnschweiler, T.K. Doyle, J.D. Houghton, G.C. Hays, C.S. Jones, L.R. Noble, V.J. Wearmouth, E.J. Southall, D.W. Sims, Environmental context explains lévy and brownian movement patterns of marine predators, Nature 465 (7301) (2010) 1066-1069.
  96. N.E. Humphries, H. Weimerskirch, N. Queiroz, E.J. Southall, D.W. Sims, Foraging success of biological Lévy flights recorded in situ, Proc. Natl. Acad. Sci. 109 (2012) 7169-7174.
  97. Y. Zhou, Y. Wang, S. He, J. Wu, A novel double glowworm swarm co-evolution optimization algorithm based lévy flights, Appl. Math. Inf. Sci. 8 (1L) (2014) 355-361.
  98. X.-S. Yang, Firefly algorithm, lévy flights and global optimization, in: M. Bramer, R. Ellis, M. Petridis (Eds.), Research and Development in Intelligent Systems XXVI, Springer, London, 2010, pp. 209-218.
  99. J. Xie, Y. Zhou, H. Chen, A novel bat algorithm based on differential operator and lévy flights trajectory, Comput. Intell. Neurosci. (2013).
  100. D.K. Sutantyo, S. Kernbach, V.A. Nepomnyashchikh, P. Levi, Multi-robot searching algorithm using lévy flight and artificial potential field, CoRR.
  101. D. Parrott, X. Li, Locating and tracking multiple dynamic optima by a particle swarm model using speciation, Trans. Evol. Comput. 10 (4) (2006) 440-458.
  102. G.J. Barlow, Improving memory for optimization and learning in dynamic environments (Ph.D. thesis), Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, 2011, July.