Academia.eduAcademia.edu

Outline

Calibration strategies for the Cherenkov Telescope Array

2014, Observatory Operations: Strategies, Processes, and Systems V

https://doi.org/10.1117/12.2054536

Abstract

The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the heightresolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum. , Telephone: +34 93 581 2935 * Additional information on those experiments can be found at www.mpi-hd.mpg.de/hfm/HESS/, wwwmagic.mppmu.mpg. de and veritas.sao.arizona.edu, respectively. † See www.cta-observatory.org.

References (86)

  1. Hillas, A. M., "Evolution of ground-based gamma-ray astronomy from the early days to the Cherenkov Telescope Arrays," Astroparticle Physics 43, 19-43 (2013).
  2. Acharya, B. S. et al., "Introducing the CTA concept," Astroparticle Physics 43, 3-18 (2013).
  3. Hinton, J., Sarkar, S., Torres, D., and Knapp, J., "A New Era in Gamma-Ray Astronomy with the Cherenkov Telescope Array," Astroparticle Physics 43, 1-2 (2013).
  4. Schlenstedt, S. and for the CTA consortium, "Status of the Cherenkov Telescope Array Project," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], (2014).
  5. Bernlöhr, K. et al., "Monte Carlo design studies for the Cherenkov Telescope Array," Astroparticle Physics 43, 171 -188 (2013).
  6. Teshima, M. and for the CTA consortium, "CTA Large Size Telescope," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  7. Schlenstedt, S. and for the CTA consortium, "Medium-Sized Telescopes for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  8. Meagher, K. and for the CTA consortium, "Schwarzschild-Couder Telescope for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  9. Moderski, R. et al., "Performance of the small size telescope sub-array of the Cherenkov Telescope Array observatory," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  10. Pareschi, G., et al., and for the ASTRI Collaboration and CTA Consortium, "The ASTRI/CTA mini-array of Small Size Telescopes Dual-Mirror: a first seed for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], 9145-22 (2014).
  11. Dumas, D., Laporte, P., Dournaux, J. L., et al., "SST-GATE telescope: an innovative dual-mirror prototype for the CTA project," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  12. Giro, E., Bonnoli, G., Canestrari, R., et al., "Tests characterization and alignment for the optics of the ASTRI SST-2M telescope prototype for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], 9151-135 (2014).
  13. Pülhofer, G., Bauer, C., Eisenkolb, F., et al., "Status of the photomultiplier-based FlashCam camera for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], (2014).
  14. Glicenstein, J. F. and for the NectarCAM and CTA consortium, "Status of the NectarCAM camera project," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  15. Yamamoto, T. and for the CTA consortium, "Development of the Camera for the Large Size Telescopes of the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], (2014).
  16. Catalano, O., Maccarone, M., Gargano, C., et al., "The camera of the ASTRI SST-2M prototype for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], 9147-12 (2014).
  17. Bonanno, G., Belluso, M., Billotta, S., et al., "SiPM Detectors for the ASTRI and CTA Projects," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], 9154-58 (2014).
  18. Meagher, K. and for the CTA consortium, "Silicon Photodetector Camera for the Schwarzschild-Couder Telescope," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  19. Acero, F., Aharonian, F., Akhperjanian, A. G., et al., "Localizing the VHE γ-ray source at the Galactic Centre," MNRAS 402, 1877-1882 (2010). arXiv:0911.1912.
  20. Fuessling, M., Oya, I., Wegner, P., et al., "Towards a global software architecture for operating and con- trolling the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014], (2014).
  21. Bulgarelli, A., Fioretti, V., Zoli, A., et al., "The Real-Time Analysis prototype of the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], (2014).
  22. Gaug, M., Schweizer, T., Martínez, M., et al., "An absolute light calibration for the MAGIC telescope," in [Proceedings of the 28 th International Cosmics Rays Conference], 5, 2923-2926 (Sept. 2003).
  23. Vacanti, G., Fleury, P., Jiang, Y., et al., "Muon ring images with an atmospheric Čerenkov telescope," Astroparticle Physics 2, 1-11 (1994).
  24. Bolz, O., Absolute energy calibration of the imaging Cherenkov telescopes of the H.E.S.S. experiment and re- sults of first observations of the supernova remnant RX J1713.7-3946, PhD thesis, Karl-Ruprecht University, Heidelberg, Germany (2004).
  25. Gaug, M., Calibration of the MAGIC Telescope and Observation of Gamma Ray Bursts, PhD thesis, Uni- versitat Autònoma de Barcelona, Spain (2006).
  26. Sitarek, J., Carmona, E., Colin, P., et al., "Physics performance of the upgraded MAGIC telescopes obtained with Crab Nebula data," in [Proceedings of the 33 rd ICRC, Rio de Janeiro ], 0074 (2013). arXiv:1308.0141.
  27. Mazin, D., Tescaro, D., Garczarczyk, M., Giavitto, G., and Sitarek, J. f., "Upgrade of the MAGIC tele- scopes," in [Proceedings of the 33 rd ICRC, Rio de Janeiro], (2013).
  28. Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al., "Observations of the Crab Pulsar between 25 and 100 GeV with the MAGIC I Telescope," Astroph. Journal 742, 43 (2011).
  29. Aliu, E., Anderhub, H., Antonelli, L. A., et al., "Improving the performance of the single-dish Cherenkov telescope MAGIC through the use of signal timing," Astroparticle Physics 30, 293-305 (2009).
  30. Barrio, J. A., Blanch, O., and López-Coto, R., "Camera Trigger Prod-I Trigsim Simulation Result." COM- CCC/130723 (2013).
  31. Albert, J. et al., "Signal Reconstruction for the MAGIC Telescope," Nuclear Instruments and Methods in Physics Research A 594, 407-419 (2008). arXiv:astro-ph/0612385.
  32. Sitarek, J., Gaug, M., Mazin, D., Paoletti, R., and Tescaro, D., "Analysis techniques and performance of the Domino Ring Sampler version 4 based readout for the MAGIC telescopes," Nucl. Instr. Methods A 723, 109-120 (2013).
  33. Daniel, M. K., White, R. J., Berge, D., et al., "A Compact High Energy Camera for the Cherenkov Telescope Array," in [Proceedings of the 33 rd ICRC, Rio de Janeiro ], ID0431 (2013). arXiv:1307.2807.
  34. Teich, M. C., Matsuo, K., and Saleh, B. E. A., "Excess noise factors for conventional and superlattice avalanche photodiodes and photomultiplier tubes," IEEE Journal of Quantum Electronics 22, 1184-1193 (1986).
  35. Maccarone, M. C., Segreto, A., Catalano, O., et al., "Auxiliary instruments for the absolute calibration of the ASTRI SST-2M prototype for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], 9149-44 (2014).
  36. Braun, I., Improving the pointing precision of the H.E.S.S. experiment, PhD thesis, Karl-Ruprecht Univer- sity, Heidelberg, Germany (2007).
  37. Pühlhofer, G. et al., "The technical performance of the HEGRA system of imaging air Cherenkov telescopes," Astroparticle Physics 20, 267-291 (2003). arXiv:astro-ph/0306123.
  38. Berge, D., Canestrari, R., Dumas, D., et al., "Telescope pointing calibration for the Cherenkov Telescope Array (CTA)," in [Proc. SPIE Astronomical Telescopes and Instruments ], (2014).
  39. Canestrari, R., Cascone, E., Conconi, P., et al., "The ASTRI SST-2M prototype for the next generation of Cherenkov telescopes: structure and mirrors," in [SPIE Conf. Series ], 8861 (2013).
  40. Hofmann, W., "How to focus a Cherenkov telescope," Journal of Physics G 27, 933-939 (2001). astro- ph/0101030.
  41. Gardiol, D., Capobianco, G., Fantinel, D., et al., "Active optics system of the ASTRI SST-2M prototype for the Cherenkov Telescope Array," in [Proc. SPIE Astronomical Telescopes + Instrumentation 2014 ], 9151-2 (2014).
  42. Kellermann, H., Mirzoyan, R., Schultz, C., et al., "Absolute Measurement of the Reflectivity and the Point Spread Function of the MAGIC Telescopes," in [Astroparticle, Particle, Space Physics and Detectors For Physics Applications -Proceedings of the 13th ICATPP Conference ], 15, 77-81 (2012).
  43. Kellermann, H., Präzise Vermessung der fokussierten Reflektivität der MAGIC Teleskopspiegel und Charak- terisierung des hierfür verwendeten diffusen Reflektors, Master's thesis, Hochschule für angewandte Wis- senschaften FH München, Germany (2011). available at https://magicold.mpp.mpg.de/publications/ theses/HKellermann_dipl.pdf.
  44. Leroy, N., Observations, avec les télescopes H.E.S.S., du rayonnement gamma émis par le Noyau Actif de Galaxie PKS 2155-304, au-delà de 100 GeV, PhD thesis, Ecole Polytéchnique, Paris, France (2004).
  45. Hofmann, W., "Intercalibration of Cherenkov telescopes in telescope arrays," Astroparticle Physics 20, 1-3 (2003). arXiv:astro-ph/0302346.
  46. Hahn, J. et al., "Impact of aerosols and adverse atmospheric conditions on the data quality for spectral analysis of the H.E.S.S. telescopes," Astroparticle Physics 54, 25-32 (2014).
  47. Mathews, J. N. and for the Auger collaboration, "Progress Towards a Cross-Calibration of the Auger and Telescope Array Fluorescence Telescopes via an Air-borne Light Source," in [Proceedings of the 33 rd International Cosmic Ray Conference, Rio de Janeiro ], 1218 (2013). arXiv:1310.0647.
  48. Machida, K. et al., "Light Source Test at the Telescope Array Site," in [Proceedings of the 33 rd International Cosmic Ray Conference, Rio de Janeiro], 0504 (2013). arXiv:1310.0647.
  49. Werner, F., Design and Test of a Flying Light Source for the Calibration of the Auger Fluorescence Tele- scopes, Master's thesis, Karlsruhe Institute of Technology (2010).
  50. Werner, F., Detection of Microwave Emission of Extensive Air Showers with the CROME Experiment, PhD thesis, Karlsruhe Institute of Technology (2013).
  51. Gaug, M., Aramo, C., Cilmo, M., et al., "A Central Laser Facility for the Cherenkov Telescope Array," in [Proceedings of the 33 rd ICRC, Rio de Janeiro], ID0659 (2013). arXiv:1307.3452.
  52. Gaug, M., "On the possiblity of using vertically pointing Central Laser Facilities to calibrate the Cherenkov Telescope Array," arXiv:1404.5639 (2014). submitted to JINST.
  53. Maccarone, M. C., Catalano, O., Giarrusso, S., et al., "Performance and applications of the UVscope instrument," Nuclear Instruments and Methods in Physics Research A 659, 569-578 (2011).
  54. Segreto, A. and for the Auger Collaboration, "Night Sky Background measurements by the Pierre Auger Fluorescence Detectors and comparison with simultaneous data from the UVscope instrument," in [Proceed- ings of the 32 nd International Cosmic Ray Conference, Beijing ], 0661 (2011).
  55. Köhler, C., Hermann, G., Hofmann, W., Konopelko, A., and Plyasheshnikov, A., "Trigger conditions and effective areas of imaging air Cherenkov telescopes," Astroparticle Physics 6, 423-423 (1997).
  56. Aharonian, F. et al., "Measurement of the radial distribution of cherenkov light generated by tev gamma-ray air showers." arXiv:astro-ph/9804133 (1998).
  57. Commichau, S. C., Biland, A., Contreras, J. L., et al., "Monte Carlo studies of geomagnetic field effects on the imaging air Cherenkov technique for the MAGIC telescope site," Nuclear Instruments and Methods in Physics Research A 595, 572-586 (2008). arXiv:0802.2551.
  58. Klepser, S., "A generalized likelihood ratio test statistic for Cherenkov telescope data," Astroparticle Physics 36, 64-76 (2012). arXiv:1112.0786.
  59. Szanecki, M., Bernlöhr, K., Sobczyńska, D., et al., "Influence of the geomagnetic field on the IACT detection technique for possible sites of CTA observatories," Astroparticle Physics 45, 1-12 (2013). arXiv:1302.6387.
  60. Commichau, S., Observation of Very High Energy Gamma-Rays from the Galactic Center with the MAGIC Telescope, considering Geomagnetic Field Effects on the Imaging Technique, PhD thesis, ETH Zürich, Switzerland (2007).
  61. Bernlöhr, K., "Impact of atmospheric parameters on the atmospheric Cherenkov technique," Astroparticle Physics 12, 255-268 (2000).
  62. Jansweijer, P. P. M., Peek, H. Z., and de Wolf, E., "White Rabbit: Sub-nanosecond timing over Ethernet," Nuclear Instruments and Methods in Physics Research A 725, 187-190 (2013).
  63. Heck, D., Peirog, T., and Knapp, J., "CORSIKA: An Air Shower Simulation Program," (2012). Astrophysics Source Code Library, ascl:1202.006.
  64. Kertzman, M. P. and Sembroski, G. H., "Computer simulation methods for investigating the detection characteristics of TeV air Cherenkov telescopes," Nuclear Instruments and Methods in Physics Research A 343, 629-643 (1994).
  65. Daniel, M. K., "Application of radiosonde data to VERITAS simulations," in [Proc. 30 th International Cosmic Ray Conference, Mérida], 3, 1329-1332 (2008).
  66. Haffke, M., Atmosphere Is MAGIC. Berechnung und Implementierung neuer Atmospharenmodelle in die MAGIC-Monte-Karlo-Kette, Master's thesis, Universität Dortmund, Germany (2007).
  67. Pierre Auger Collaboration, Abreu, P., Aglietta, M., et al., "Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)," Astroparticle Physics 35, 591-607 (2012).
  68. Garrido, D., Gaug, M., Doro, M., et al., "Atmospheric Aerosols at the MAGIC Site," in [Proceedings of the 33 rd ICRC, Rio de Janeiro], (2013). arXiv:1308.0473.
  69. López-Oramas, A., Abril, O., Blanch Bigas, O., et al., "The IFAE/UAB and LUPM Raman LIDARs for Cherenkov Telescope Array Observatory," in [Proceedings of the 33 rd International Cosmic Ray Conference, Rio de Janeiro], 0210 (2013). arXiv:1307.5092.
  70. Doro, M., Gaug, M., Pallotta, J., et al., "Status and motivation of Raman LIDARs development for the CTA Observatory," in [Proceedings of the First AtmoHEAD Conference, Saclay, June 10-12], (2014). arXiv:1402.0638.
  71. Fruck, C., Gaug, M., Zanin, R., et al., "A novel LIDAR-based Atmospheric Calibration Method for Improving the Data Analysis of MAGIC," in [Proceedings of the 33 rd ICRC, Rio de Janeiro ], (2013). arXiv:1403.3591.
  72. García-Gil, A., Muñoz-Tuñón, C., and Varela, A. M., "Atmosphere Extinction at the ORM on La Palma: A 20 yr Statistical Database Gathered at the Carlsberg Meridian Telescope," PASP 122, 1109-1121 (2010).
  73. Vercellone, S., Catalano, O., Maccarone, M., et al., "The ASTRI Project: An Innovative Prototype for a Cherenkov Dual-mirror Small-telescope," in [AAS/High Energy Astrophysics Division ], 13, #123.31 (2013).
  74. Sottile, G., Russo, F., Agnetta, G., et al., "UVSiPM: A light detector instrument based on a SiPM sensor working in single photon counting," Nuclear Physics B Proceedings Supplements 239, 258-261 (2013).
  75. Prouza, M., Jélinek, M., Kubánek, M., et al., "FRAM The Robotic Telescope for the Monitoring of the Wavelength Dependence of the Extinction: Description of Hardware, Data Analysis, and Results," Advances in Astronomy 2010, 849382 (2010).
  76. Aleksić, J., Alvarez, E. A., Antonelli, L. A., et al., "Phase-resolved energy spectra of the Crab pulsar in the range of 50-400 GeV measured with the MAGIC telescopes," Astronomy & Astrophysics 540, A69 (2012). arXiv:1109.6124.
  77. Mandat, D., Pech, M., Hrabovsky, M., et al., "All Sky Camera instrument for night sky monitoring," in [Proceedings of the First AtmoHEAD Conference, Saclay, June 10-12], (2014). arXiv:1402.4762.
  78. Münkel, C., Eresmaa, N., Räsänen, J., and Karppinen, A., "Retrieval of mixing height and dust concentra- tion with lidar ceilometer," Boundary-Layer Meteorol 124, 117-128 (2007).
  79. Nemiroff, R. J., Rafert, J. B., Ftaclas, C., Pereira, W. E., and Perez-Ramirez, D., "Educational Aspects of the CONCAM Sky Monitoring Project," in [American Astronomical Society Meeting Abstracts], Bulletin of the American Astronomical Society 32, #120.04 (2000).
  80. Smith, R., Walker, D., and Schwarz, H. E., "The Tololo All Sky Camera," in [Scientific Detectors for Astronomy, The Beginning of a New Era ], Astrophysics and Space Science Library 300, 379-384 (2004).
  81. Bastieri, D., Busetto, G., de Angelis, A., et al., "Energy calibration of Cherenkov Telescopes using GLAST data," in [The First GLAST Symposium], Ritz, S., Michelson, P., and Meegan, C. A., eds., American Institute of Physics Conference Series 921, 522-523 (2007).
  82. Bastieri, D., Busetto, G., de Angelis, A., and et al., "Energy Calibration of Cherenkov Telescopes using GLAST Data," International Cosmic Ray Conference 3, 1555-1558 (2008).
  83. Meyer, M., Horns, D., and Zechlin, H., "Cross Calibration of Imaging Air Cherenkov Telescopes with Fermi," arXiv:0912.3754 (2009).
  84. Meyer, M., Horns, D., and Zechlin, H.-S., "The Crab Nebula as a standard candle in very high-energy astrophysics," Astronomy and Astrophysics 523, A2 (2010).
  85. Ackermann, M., Ajello, M., Allafort, A., et al., "In-flight measurement of the absolute energy scale of the Fermi Large Area Telescope," Astroparticle Physics 35, 346-353 (2012).
  86. Egberts, K. and H.E.S.S. Collaboration, "The spectrum of cosmic-ray electrons measured with H.E.S.S.," Nuclear Instruments and Methods in Physics Research A 630, 36-39 (2011).