Science with the Cherenkov Telescope Array
Science with the Cherenkov Telescope Array
https://doi.org/10.1142/10986Abstract
AI
AI
The Cherenkov Telescope Array (CTA) is poised to become the primary observatory for very high energy gamma-ray astronomy, focusing on a diverse range of scientific inquiries including dark matter detection and cosmic particle acceleration. With its advanced technology, CTA offers enhanced performance over existing instruments, featuring improved sensitivity, resolution, and a wide field of view for rapid sky surveys. The collaborative efforts of the CTA Consortium aim to conduct key scientific projects over its operational timeframe, providing valuable data for the global scientific community and expanding our understanding of high-energy astrophysical phenomena.
References (659)
- Abeysekara A.U., Albert A., Alfaro R. et al. (2017). Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. ApJ, 843, 39
- Holler M., Berge D., van Eldik C. et al. (2015). Observations of the Crab Nebula with H.E.S.S. Phase II. arXiv:1509.02902
- Aleksić J., Ansoldi S., Antonelli L.A. et al. (2016). The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, 72, 76
- Bartos I., Veres P., Nieto D. et al. (2014). Cherenkov Telescope Array is well suited to follow up gravitational-wave transients. MNRAS, 443, 738
- Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger . Physical Review Letters, 116, 6, 061102
- Dubus G., Contreras J.L., Funk S. et al. (2013). Surveys with the Cherenkov Telescope Array . Astroparticle Physics, 43, 317
- Abdo A.A., Allen B., Berley D. et al. (2007). TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro. ApJ, 664, L91
- Amenomori M., Ayabe S., Chen D. et al. (2005). A Northern Sky Survey for Steady Tera-Electron Volt Gamma-Ray Point Sources Using the Tibet Air Shower Array. ApJ, 633, 1005
- Arsioli B., Fraga B., Giommi P. et al. (2015). 1WHSP: An IR-based sample of ˜1000 VHE γ-ray blazar candidates. A&A, 579, A34
- Padovani P. & Giommi P. (2015). A simplified view of blazars: the very high energy γ-ray vision. MNRAS, 446, L41
- Inoue S., Granot J., O'Brien P.T. et al. (2013). Gamma-ray burst science in the era of the Cherenkov Telescope Array . Astroparticle Physics, 43, 252
- de O ña-Wilhelmi E., Rudak B., Barrio J.A. et al. (2013). Prospects for observations of pulsars and pulsar wind nebulae with CTA. Astroparticle Physics, 43, 287
- Uchiyama Y., Aharonian F.A., Tanaka T. et al. (2007). Extremely fast acceleration of cosmic rays in a supernova remnant. Nature, 449, 576
- Bulgarelli A., Fioretti V., Contreras J.L. et al. (2013). The Real-Time Analysis of the Cherenkov Telescope Array Observatory . arXiv:1307.6489
- Funk S., Hinton J.A. & CTA Consortium (2013). Comparison of Fermi-LAT and CTA in the region between 10-100 GeV . Astroparticle Physics, 43, 348
- Begelman M.C., Fabian A.C. & Rees M.J. (2008). Implications of very rapid TeV variability in blazars. MNRAS, 384, L19
- Paredes J.M., Bednarek W., Bordas P. et al. (2013). Binaries with the eyes of CTA. Astroparticle Physics, 43, 301
- Picozza P. & Boezio M. (2013). Multi messenger astronomy and CTA: TeV cosmic rays and electrons. Astroparticle Physics, 43, 163
- Dravins D., LeBohec S., Jensen H. et al. (2013). Optical intensity interferometry with the Cherenkov Telescope Array . Astroparticle Physics, 43, 331
- Gabici S. & Aharonian F.A. (2014). Hadronic gamma-rays from RX J1713.7-3946?. MNRAS, 445, L70
- Acero F., Bamba A., Casanova S. et al. (2013). Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA. Astroparticle Physics, 43, 276
- The CTA Consortium: Acero, F, Aloisio R., Amans J. et al. (2017). Prospects for cherenkov telescope array observations of the young supernova remnant rx j1713.73946. The Astrophysical Journal, 840, 2, 74
- V ölk H.J., Aharonian F.A. & Breitschwerdt D. (1996). The Nonthermal Energy Content and Gamma-Ray Emission of Starburst Galaxies and Clusters of Galaxies. Space Sci. Rev., 75, 279
- Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Astrophysical Implications of the Binary Black Hole Merger GW150914. ApJ, 818, L22
- -(2016). GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116, 24, 241103
- -(2016). Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6, 4, 041015
- Sol H., Zech A., Boisson C. et al. (2013). Active Galactic Nuclei under the scrutiny of CTA. Astroparticle Physics, 43, 215
- Mazin D., Raue M., Behera B. et al. (2013). Potential of EBL and cosmology studies with the Cherenkov Telescope Array. Astroparticle Physics, 43, 241
- Broderick A.E., Chang P. & Pfrommer C. (2012). The Cosmological Impact of Luminous TeV Blazars. I. Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. ApJ, 752, 22
- Hinton J., Sarkar S., Torres D. et al. (2013). A New Era in Gamma-Ray Astronomy with the Cherenkov Telescope Array. Astroparticle Physics, 43, 1
- Bourke T.L., Braun R., Fender R. et al. (editors) (2015). Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14), volume AASKA14. SISSA, SISSA
- Ray P.S., Abdo A.A., Parent D. et al. (2012). Radio Searches of Fermi LAT Sources and Blind Search Pulsars: The Fermi Pulsar Search Consortium. proc. Fermi Symposium
- Lorimer D.R., Bailes M., McLaughlin M.A. et al. (2007). A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318, 777
- Thornton D., Stappers B., Bailes M. et al. (2013). A Population of Fast Radio Bursts at Cosmological Distances. Science, 341, 53
- Pavlidou V., Angelakis E., Myserlis I. et al. (2014). The RoboPol optical polarization survey of gamma-ray-loud blazars. MNRAS, 442, 1693
- Blinov D., Pavlidou V., Papadakis I. et al. (2015). RoboPol: first season rotations of optical polarization plane in blazars. MNRAS, 453, 1669
- Reinthal R., Lindfors E.J., Mazin D. et al. (2012). Connection Between Optical and VHE Gamma-ray Emission in Blazar Jets. Journal of Physics Conference Series, 355, 1, 012013
- Lindfors E. & MAGIC Collaboration (2012). Recent results from MAGIC observations of AGN. Journal of Physics Conference Series, 355, 1, 012003
- Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Discovery of VHE γ-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations. A&A, 544, A142
- Tepe A. & HAWC Collaboration (2012). HAWC -The High Altitude Water Cherenkov Detector . Journal of Physics Conference Series, 375, 5, 052026
- Di Sciascio G. & on behalf of the LHAASO Collaboration (2016). The LHAASO experiment: from Gamma-Ray Astronomy to Cosmic Rays. arXiv:1602.07600
- Aartsen M. et al. (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector . Science, 342, 1242856
- Razzaque S. (2013). Galactic Center origin of a subset of IceCube neutrino events. Phys. Rev. D, 88, 8, 081302
- Katz U.F. (2006). KM3NeT: Towards a km 3 Mediterranean neutrino telescope. Nuclear Instruments and Methods in Physics Research A, 567, 457
- Aasi J., Abadie J., Abbott B.P. et al. (2013). Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories. arXiv:1304.0670
- Abadie J., Abbott B.P., Abbott R. et al. (2010). Topical Review: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27, 17, 173001
- Punturo M., Abernathy M., Acernese F. et al. (2010). The Einstein Telescope: a third-generation gravitational wave observatory . Classical and Quantum Gravity, 27, 19, 194002
- Abdallah H. et al. (2016). Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett., 117, 11, 111301
- Ackermann M., Albert A., Anderson B. et al. (2015). Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Physical Review Letters, 115, 23, 231301
- Roszkowski L., Sessolo E.M. & Williams A.J. (2015). Prospects for dark matter searches in the pMSSM. Journal of High Energy Physics, 2, 14
- Roszkowski L., Sessolo E.M. & Williams A.J. (2014). What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection. JHEP, 1408, 067
- Abramowski A. et al. (2011). Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. Phys.Rev.Lett., 106, 161301
- Zwicky F. (1933). Die Rotverschiebung von extragalaktischen Nebeln. Helv.Phys.Acta, 6, 110
- Clowe D., Gonzalez A. & Markevitch M. (2004). Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter . ApJ, 604, 596
- Bradac M., Allen S.W., Treu T. et al. (2008). Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222. ApJ, 687, 959
- Clowe D., Bradac M., Gonzalez A.H. et al. (2006). A direct empirical proof of the existence of dark matter . Astrophys. J., 648, L109
- Alcock C. et al. (2000). The MACHO project: Microlensing results from 5.7 years of LMC observations. ApJ, 542, 281
- Tisserand P. et al. (2007). Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. As- tron.Astrophys., 469, 387
- Ade P. et al. (2014). Planck intermediate results. XVI. Profile likelihoods for cosmological parameters. Astron.Astrophys., 566, A54
- Planck Collaboration, Ade P.A.R., Aghanim N. et al. (2016). Planck 2015 results. XIII. Cosmological parameters. A&A, 594, A13
- Springel V., Wang J., Vogelsberger M. et al. (2008). The Aquarius Project: the subhalos of galactic halos. MNRAS, 391, 1685
- Diemand J., Kuhlen M., Madau P. et al. (2008). Clumps and streams in the local dark matter distribution. Nature, 454, 735
- Navarro J.F., Frenk C.S. & White S.D. (1996). The Structure of cold dark matter halos. ApJ, 462, 563
- Graham A.W., Merritt D., Moore B. et al. (2006). Empirical Models for Dark Matter Halos. III. The Kormendy relation and the log(rhoe) - log(Re) relation. Astron.J., 132, 2711
- Navarro J.F., Ludlow A., Springel V. et al. (2010). The Diversity and Similarity of Cold Dark Matter Halos. Mon.Not.Roy.Astron.Soc., 402, 21
- Walker M.G., Mateo M., Olszewski E.W. et al. (2009). A Universal Mass Profile for Dwarf Spheroidal Galaxies. ApJ, 704, 1274
- Walker M.G. & Penarrubia J. (2011). A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. ApJ, 742, 20
- Zeldovich Y., Klypin A., Khlopov M.Y. et al. (1980). Astrophysical constraints on the mass of heavy stable neutral leptons. Sov.J.Nucl.Phys., 31, 664
- Blumenthal G.R., Faber S., Flores R. et al. (1986). Contraction of Dark Matter Galactic Halos Due to Baryonic Infall. ApJ, 301, 27
- Merritt D. (2004). Evolution of the dark matter distribution at the galactic center . Phys.Rev.Lett., 92, 201304
- Merritt D., Harfst S. & Bertone G. (2007). Collisionally Regenerated Dark Matter Structures in Galactic Nuclei. Phys.Rev., D75, 043517
- Gondolo P. & Silk J. (1999). Dark matter annihilation at the galactic center . Phys.Rev.Lett., 83, 1719
- Merritt D., Milosavljevic M., Verde L. et al. (2002). Dark matter spikes and annihilation radiation from the galactic center . Phys.Rev.Lett., 88, 191301
- Gnedin N.Y., Tassis K. & Kravtsov A.V. (2009). Modeling Molecular Hydrogen and Star Formation in Cosmological Simulations. ApJ, 697, 55
- Wise J.H. & Abel T. (2011). Enzo+Moray: Radiation Hydrodynamics Adaptive Mesh Refinement Simulations with Adaptive Ray Tracing. MNRAS, 414, 3458
- Teyssier R. (2002). Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. As- tron.Astrophys., 385, 337
- Keres D., Vogelsberger M., Sijacki D. et al. (2012). Moving mesh cosmology: characteristics of galaxies and haloes. MNRAS, 425, 2027 References
- Ackermann M. et al. (2014). Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope. Phys.Rev., D89, 4, 042001
- Susskind L. (1984). The Gauge Hierarchy Problem, Technicolor, Supersymmetry, and all that. (Talk). Phys.Rept., 104, 181
- Bertone G., Hooper D. & Silk J. (2005). Particle dark matter: Evidence, candidates and constraints. Phys.Rept., 405, 279
- Cushman P., Galbiati C., McKinsey D. et al. (2013). Snowmass CF1 Summary: WIMP Dark Matter Direct Detection. arXiv:1310.8327
- Tulin S., Yu H.B. & Zurek K.M. (2013). Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure. Phys. Rev. D, 87, 11, 115007
- Cahill-Rowley M., Cotta R., Drlica-Wagner A. et al. (2013). Complementarity and Searches for Dark Matter in the pMSSM. arXiv:1305.6921
- Bringmann T., Calore F., Vertongen G. et al. (2011). On the Relevance of Sharp Gamma-Ray Features for Indirect Dark Matter Searches. Phys.Rev., D84, 103525
- Arina C., Hambye T., Ibarra A. et al. (2010). Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay. JCAP, 1003, 024
- Bringmann T., Bergstrom L. & Edsjo J. (2008). New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation. JHEP, 0801, 049
- Birkedal A., Matchev K.T., Perelstein M. et al. (2005). Robust gamma ray signature of WIMP dark matter . arXiv:0507194
- Bergstrom L., Bringmann T., Eriksson M. et al. (2005). Gamma rays from Kaluza-Klein dark matter . Phys.Rev.Lett., 94, 131301
- Bergstrom L., Bringmann T., Eriksson M. et al. (2005). Gamma rays from heavy neutralino dark matter . Phys.Rev.Lett., 95, 241301
- Bergstrom L. (1989). Radiative Processes in Dark Matter Photino Annihilation. Phys.Lett., B225, 372
- Toma T. (2013). Internal Bremsstrahlung Signature of Real Scalar Dark Matter and Consistency with Thermal Relic Density . Phys.Rev.Lett., 111, 091301
- Mayer L. (2010). Environmental mechanisms shaping the nature of dwarf spheroidal galaxies: the view of computer simulations. Adv.Astron., 2010, 278434
- Aharonian F. et al. (2006). H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation. Phys.Rev.Lett., 97, 221102
- Iocco F., Pato M., Bertone G. et al. (2011). Dark Matter distribution in the Milky Way: microlensing and dynamical constraints. JCAP, 1111, 029
- Schaye J., Crain R.A., Bower R.G. et al. (2015). The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. MNRAS, 446, 521
- Wyrzykowski L., Rynkiewicz A.E., Skowron J. et al. (2015). The Largest Sample of Microlensing Events and the Structure of the Galactic Bulge from the OGLE-III Survey. ApJS, 216, 12
- Freeman K., Ness M., de Boer E.W. et al. (2013). ARGOS II: The Galactic Bulge Survey. MNRAS, 428, 3660
- Howard C.D., Rich R.M., Reitzel D.B. et al. (2008). The Bulge Radial Velocity Assay (BRAVA): I. Sample Selection and a Rotation Curve. ApJ, 688, 1060
- GAIA: http://sci.esa.int/gaia/
- Zoccali M., Gonzalez O.A., Vasquez S. et al. (2014). The GIRAFFE Inner Bulge Survey (GIBS). I. Survey description and a kinematical map of the Milky Way bulge. A&A, 562, A66
- Lefranc V., Moulin E., Panci P. et al. (2015). Prospects for Annihilating Dark Matter in the inner Galactic halo by the Cherenkov Telescope Array . Phys. Rev. D, 91, 12, 122003
- Cabrera-Catalan M.E., Ando S., Weniger C. et al. (2015). Indirect and direct detection prospect for TeV dark matter in the nine parameter MSSM. Phys. Rev. D, 92, 3, 035018
- Pierre M., Siegal-Gaskins J.M. & Scott P. (2014). Sensitivity of CTA to dark matter signals from the Galactic Center . J. Cosmology Astropart. Phys., 6, 024
- Silverwood H., Weniger C., Scott P. et al. (2015). A realistic assessment of the CTA sensitivity to dark matter annihilation. JCAP, 1503, 03, 055
- Ackermann M. et al. (2012). Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum. Phys.Rev., D86, 022002
- Abramowski A. et al. (2013). Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S. Phys.Rev.Lett., 110, 041301
- Bringmann T., Huang X., Ibarra A. et al. (2012). Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation. JCAP, 1207, 054
- Weniger C. (2012). A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope. JCAP, 1208, 007
- Martinez G.D. (2015). A Robust Determination of Milky Way Satellite Properties using Hierarchical Mass Modeling. 451, 2524
- The DES Collaboration, Bechtol K. et al. (2015). Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data. ApJ, 807, 50
- Koposov S.E., Belokurov V., Torrealba G. et al. (2015). Beasts of the Southern Wild: Discovery of nine Ultra Faint satellites in the vicinity of the Magellanic Clouds. ApJ, 805, 130
- Bonnivard V., Combet C., Maurin D. et al. (2015). Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy . Astrophys. J., 808, 2, L36
- Bringmann T. (2009). Particle Models and the Small-Scale Structure of Dark Matter . New J.Phys., 11, 105027
- Zackrisson E. & Riehm T. (2010). Gravitational lensing as a probe of cold dark matter subhalos. Adv.Astron., 2010, 478910
- Chen J. & Koushiappas S.M. (2010). Gravitational Nanolensing from Subsolar Mass Dark Matter Halos. ApJ, 724, 400
- Garsden H., Bate N. & Lewis G. (2012). Probing planetary mass dark matter in galaxies: gravitational nanolensing of multiply imaged quasars. MNRAS, 420, 3574
- Geringer-Sameth A. & Koushiappas S.M. (2012). Detecting unresolved moving sources in a diffuse background. MNRAS, 425, 862
- Carlberg R.G. & Grillmair C.J. (2013). Gaps in the GD-1 Star Stream. ApJ, 768, 171
- Grillmair C.J., Cutri R., Masci F.J. et al. (2013). Detection of a Nearby Halo Debris Stream in the WISE and 2MASS Surveys. ApJ, 769, L23
- Grillmair C.J. (2014). Two New Halo Debris Streams in the Sloan Digital Sky Survey. ApJ, 790, L10
- Hargis J., Willman B., Sand D. et al. (2014). Milky Way Stellar Streams: A Window to Purely Dark Subhalos. NOAO Proposal
- Sesar B., Banholzer S.R., Cohen J.G. et al. (2014). Stacking the Invisibles: A Guided Search for Low-luminosity Milky Way Satellites. ApJ, 793, 135
- Erkal D. & Belokurov V. (2015). Forensics of Subhalo-Stream Encounters: The Three Phases of Gap Growth. MNRAS, 450, 1136
- Pieri L., Bertone G. & Branchini E. (2008). Dark Matter Annihilation in Substructures Revised. MNRAS, 384, 1627
- Buckley M.R. & Hooper D. (2010). Dark Matter Subhalos In the Fermi First Source Catalog. Phys.Rev., D82, 063501
- Zechlin H., Fernandes M., Elsaesser D. et al. (2012). Dark matter subhaloes as gamma-ray sources and candidates in the first Fermi-LAT catalogue. Astron.Astrophys., 538, A93
- Smith G.P. (1963). A peculiar feature at l II = 40 • .5, b II = -15 • .0. Bull. Astron. Inst. Netherlands, 17, 203
- Saul D.R., Peek J., Grcevich J. et al. (2012). The GALFA-HI Compact Cloud Catalog. ApJ, 758, 44
- Hill A.S., Haffner L.M. & Reynolds R.J. (2009). Ionized Gas in the Smith Cloud. ApJ, 703, 1832
- Bonnivard V., Combet C., Maurin D. et al. (2015). Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - impact of physical parameters and triaxiality. MNRAS, 446, 3002
- Geringer-Sameth A., Koushiappas S.M. & Walker M. (2015). Dwarf galaxy annihilation and decay emission profiles for dark matter experi- ments. ApJ, 801, 74
- Koch A., Kleyna J., Wilkinson M. et al. (2007). Stellar kinematics in the remote Leo II dwarf spheroidal galaxy -Another brick in the wall. Astron.J., 134, 566
- Walker M.G., Mateo M. & Olszewski E. (2009). Stellar Velocities in the Carina, Fornax, Sculptor and Sextans dSph Galaxies: Data from the Magellan/MMFS Survey. Astron.J., 137, 3100
- Walker M. (2013). Dark Matter in the Galactic Dwarf Spheroidal Satellites, p. 1039
- Charbonnier A., Combet C., Daniel M. et al. (2011). Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories -I. The classical dSphs. Mon.Not.Roy.Astron.Soc., 418, 1526
- Strigari L.E., Koushiappas S.M., Bullock J.S. et al. (2008). The Most Dark Matter Dominated Galaxies: Predicted Gamma-ray Signals from the Faintest Milky Way Dwarfs. ApJ, 678, 614
- Strigari L.E. (2013). Galactic Searches for Dark Matter . Phys.Rept., 531, 1
- Koposov S., Belokurov V., Evans N. et al. (2008). The Luminosity Function of the Milky Way Satellites. ApJ, 686, 279
- Tollerud E.J., Bullock J.S., Strigari L.E. et al. (2008). Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function. ApJ, 688, 277
- Bullock J.S. (2010). Notes on the Missing Satellites Problem. arXiv:1009.4505
- Hargis J.R., Willman B. & Peter A.H.G. (2014). Too Many, Too Few, or Just Right? The Predicted Number and Distribution of Milky Way Dwarf Galaxies. ApJ, 795, L13
- Tasitsiomi A., Siegal-Gaskins J.M. & Olinto A.V. (2004). Gamma-ray and synchrotron emission from neutralino annihilation in the Large Magellanic Cloud. Astropart.Phys., 21, 637
- Buckley M.R., Charles E., Gaskins J.M. et al. (2015). Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope. Phys. Rev. D, 91, 10, 102001
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Observations of the Large Magellanic Cloud with Fermi. A&A, 512, A7+
- H.E.S.S. Collaboration, Abramowski A., Aharonian F. et al. (2015). The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud. Science, 347, 406
- Kim S., Staveley-Smith L., Dopita M.A. et al. (1998). An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ, 503, 674
- van der Marel R.P. & Kallivayalil N. (2014). Third-Epoch Magellanic Cloud Proper Motions II: The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ, 781, 2, 121
- van der Marel R.P., Alves D.R., Hardy E. et al. (2002). New understanding of large magellanic cloud structure, dynamics and orbit from carbon star kinematics. Astron.J., 124, 2639
- Combet C., Maurin D., Nezri E. et al. (2012). Decaying dark matter: Stacking analysis of galaxy clusters to improve on current limits. Phys. Rev. D, 85, 6, 063517
- Sanchez-Conde M.A. & Prada F. (2014). The flattening of the concentration-mass relation towards low halo masses and its implications for the annihilation signal boost. MNRAS, 442, 2271
- Pinzke A., Pfrommer C. & Bergstrom L. (2009). Gamma-rays from dark matter annihilations strongly constrain the substructure in halos. Phys.Rev.Lett., 103, 181302
- Pinzke A., Pfrommer C. & Bergstr öm L. (2011). Prospects of detecting gamma-ray emission from galaxy clusters: Cosmic rays and dark matter annihilations. Phys. Rev. D, 84, 12, 123509
- Cirelli M., Moulin E., Panci P. et al. (2012). Gamma ray constraints on Decaying Dark Matter . Phys. Rev., D86, 083506
- S ánchez-Conde M.A., Cannoni M., Zandanel F. et al. (2011). Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?. J. Cosmology Astropart. Phys., 12, 011
- Aleksić J., Rico J. & Martinez M. (2012). Optimized analysis method for indirect dark matter searches with imaging air Cherenkov telescopes. J. Cosmology Astropart. Phys., 10, 032
- Ackermann M. et al. (2012). Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements. ApJ, 761, 91
- Cembranos J.A.R., de La Cruz-Dombriz A., Dobado A. et al. (2011). Photon spectra from WIMP annihilation. Phys. Rev. D, 83, 8, 083507
- Ponti G., Morris M.R., Terrier R. et al. (2015). The XMM-Newton view of the central degrees of the Milky Way. MNRAS, 453, 172
- LaRosa T.N., Kassim N.E., Lazio T.J.W. et al. (2000). A Wide-Field 90 Centimeter VLA Image of the Galactic Center Region. AJ, 119, 207
- Molinari S., Bally J., Noriega-Crespo A. et al. (2011). A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center . ApJ, 735, L33
- van Eldik C. (2015). Gamma rays from the Galactic Centre region: A review. Astroparticle Physics, 71, 45
- Aharonian F., Akhperjanian A.G., Anton G. et al. (2009). Spectrum and variability of the Galactic center VHE γ-ray source HESS J1745-290. A&A, 503, 817
- Archer A., Barnacka A., Beilicke M. et al. (2014). Very-high Energy Observations of the Galactic Center Region by VERITAS in 2010-2012.
- ApJ, 790, 149
- Aharonian F., Akhperjanian A.G., Bazer-Bachi A.R. et al. (2006). Discovery of very-high-energy γ-rays from the Galactic Centre ridge. Nature, 439, 695
- Archer A., Benbow W., Bird R. et al. (2016). TeV Gamma-Ray Observations of the Galactic Center Ridge by VERITAS. ApJ, 821, 129
- HESS Collaboration, Abramowski A., Aharonian F. et al. (2016). Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 531, 476
- Aharonian F., Akhperjanian A.G., Aye K.M. et al. (2005). Very high energy gamma rays from the composite SNR G 0.9+0.1. A&A, 432, L25
- Jones P.A., Burton M.G., Cunningham M.R. et al. (2012). Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines. MNRAS, 419, 2961
- Johnson S.P., Dong H. & Wang Q.D. (2009). A large-scale survey of X-ray filaments in the Galactic Centre. MNRAS, 399, 1429
- Kosack K. et al. (2004). TeV gamma-ray observations of the galactic center . ApJ, 608, L97
- Tsuchiya K. et al. (2004). Detection of sub-TeV gamma-rays from the Galactic Center direction by CANGAROO-II. ApJ, 606, L115
- Figer D.F., Rich R.M., Kim S.S. et al. (2004). An extended star formation history for the Galactic Center from Hubble Space Telescope / NICMOS observations. ApJ, 601, 319
- Crocker R.M., Jones D.I., Aharonian F. et al. (2011). Wild at Heart:-The Particle Astrophysics of the Galactic Centre. Mon.Not.Roy.Astron.Soc., 413, 763
- Yoast-Hull T.M., Gallagher J. & Zweibel E.G. (2014). The Cosmic Ray Population of the Galactic Central Molecular Zone. ApJ, 790, 86
- Yang H.Y., Ruszkowski M., Ricker P. et al. (2012). The Fermi Bubbles: Supersonic AGN Jets with Anisotropic Cosmic Ray Diffusion. ApJ, 761, 185
- Law C. (2010). A Multiwavelength View of a Mass Outflow from the Galactic Center . ApJ, 708, 474
- Nakashima S., Nobukawa M., Uchida H. et al. (ApJ). Discovery of the recombining plasma in the south of the Galactic center; a relic of the past Galactic center activity?. 2013, 773, 20N
- Borkowski K.J., Reynolds S.P., Green D.A. et al. (2014). Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3. ApJ, 790, L18
- Aharonian F. et al. (2006). The H.E.S.S. survey of the inner galaxy in very high-energy gamma-rays. ApJ, 636, 777
- Aharonian F., Akhperjanian A.G., Barres de Almeida U. et al. (2008). Exploring a SNR/molecular cloud association within HESS J1745-303. A&A, 483, 509
- Aharonian F. et al. (2006). H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation. Phys.Rev.Lett., 97, 221102
- Zubovas K., Nayakshin S. & Markoff S. (2012). Sgr A* flares: tidal disruption of asteroids and planets?. MNRAS, 421, 1315
- Wommer E., Melia F. & Fatuzzo M. (2008). Diffuse TeV Emission at the Galactic Centre. MNRAS, 387, 987
- Melia F. & Fatuzzo M. (2011). Diffusive cosmic-ray acceleration at the Galactic Centre. MNRAS, 410, L23
- Amano T., Torii K., Hayakawa T. et al. (2011). Stochastic Acceleration of Cosmic Rays in the Central Molecular Zone of the Galaxy . arXiv:1110.3140
- Abeysekara A.U., Alfaro R., Alvarez C. et al. (2013). Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 50, 26
- Ackermann M., Ajello M., Atwood W.B. et al. (2016). 2FHL: The Second Catalog of Hard Fermi-LAT Sources. ApJS, 222, 5
- Carrigan S., Brun F., Chaves R.C.G. et al. (2013). Charting the TeV Milky Way: H.E.S.S. Galactic plane survey maps, catalog and source populations. arXiv:1307.4868
- Ong R. et al. (2013). Recent VERITAS Results on VHE Gamma-ray Sources in Cygnus. proc. 33rd ICRC Rio de Janiero, Brazil
- Bartoli B., Bernardini P., Bi X.J. et al. (2013). TeV Gamma-Ray Survey of the Northern Sky Using the ARGO-YBJ Detector . ApJ, 779, 27
- Aharonian F. et al. (2002). A Search for TeV Gamma-Ray Emission from SNRs, Pulsars and Unidentified GeV Sources in the Galactic Plane in the Longitude Range between -2 deg and 85 deg.. A&A, 395, 803
- Atkins, R and others (2004). TeV Gamma-Ray Survey of the Northern Hemisphere Sky using the Milagro Observatory. ApJ, 608, 680 [197] The flux of very high energy gamma rays from the Crab nebula is set to that measured by HEGRA, in Aharonian, F. et al. (2004), The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cherenkov Telescopes, ApJ, 614, 897. The HEGRA Crab nebula spectrum is dN/dE = 2.83 x 10 -11 (E/1 TeV) -2.62 cm -2 s -1 TeV -1 . For an energy threshold of 125 GeV, 1 mCrab = 5.07 × 10 -13 cm -2 s -1 .
- H. E. S. S. Collaboration, :, Abramowski A. et al. (2014). Diffuse Galactic gamma-ray emission with H.E.S.S. arXiv:1411.7568
- Renaud M. (2009). Latest results on Galactic sources as seen in VHE gamma-rays. Proceedings of 44th Recontres de Moriond 2009
- Abdo A.A., Allen B.T., Aune T. et al. (2009). Milagro Observations of Multi-TeV Emission from Galactic Sources in the Fermi Bright Source List. ApJ, 700, L127
- Acharya, B. et al. (2013). Introducing the CTA concept. Astroparticle Physics, 43, 3
- Schure K.M. & Bell A.R. (2013). Cosmic ray acceleration in young supernova remnants. MNRAS, 435, 1174
- Abdo A. et al. (2009). Fermi Large Area Telescope Brght Gamma-Ray Source List. ApJS, 183, 46
- TeVCat: http://tevcat.uchicago.edu/
- Aharonian F. et al. (2006). The H.E.S.S. Survey of the Inner Galaxy in Very High-Energy Gamma-Rays. ApJ, 636, 777
- Pietrzy ński G., Graczyk D., Gieren W. et al. (2013). An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature, 495, 76
- van der Marel R.P. (2006). The Large Magellanic Cloud: structure and kinematics. In M. Livio & T.M. Brown (editors), The Local Group as an Astrophysical Laboratory, pp. 47-71
- Hughes A., Staveley-Smith L., Kim S. et al. (2007). An Australia Telescope Compact Array 20-cm radio continuum study of the Large Magellanic Cloud. MNRAS, 382, 543
- Walborn N.R., Sana H., Sim ón-Díaz S. et al. (2014). The VLT-FLAMES Tarantula Survey. XIV. The O-type stellar content of 30 Doradus. A&A, 564, A40
- McCray R. (1993). Supernova 1987A revisited. ARA&A, 31, 175
- Bozzetto L.M., Filipović M.D., Vukotić B. et al. (2017). Statistical Analysis of Supernova Remnants in the Large Magellanic Cloud. ApJS, 230, 2
- Crowther P.A., Schnurr O., Hirschi R. et al. (2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150M solar stellar mass limit. MNRAS, 408, 731
- References
- Lawton B., Gordon K.D., Babler B. et al. (2010). Spitzer Analysis of H II Region Complexes in the Magellanic Clouds: Determining a Suitable Monochromatic Obscured Star Formation Indicator . ApJ, 716, 453
- Dunne B.C., Points S.D. & Chu Y.H. (2001). X-Rays from Superbubbles in the Large Magellanic Cloud. VI. A Sample of Thirteen Superbubbles. ApJS, 136, 119
- Kim S., Dopita M.A., Staveley-Smith L. et al. (1999). H I Shells in the Large Magellanic Cloud. AJ, 118, 2797
- Marshall F.E., Gotthelf E.V., Zhang W. et al. (1998). Discovery of an Ultrafast X-Ray Pulsar in the Supernova Remnant N157B. ApJ, 499, L179
- Seward F.D., Harnden Jr. F.R. & Helfand D.J. (1984). Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud. ApJ, 287, L19
- de Grijs R. & Anders P. (2006). How well do we know the age and mass distributions of the star cluster system in the Large Magellanic Cloud?. MNRAS, 366, 295
- Ackermann M., Albert A., Atwood W.B. et al. (2016). Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations. A&A, 586, A71
- H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2012). Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with H.E.S.S.. A&A, 545, L2
- Chevalier R.A. & Dwarkadas V.V. (1995). The Presupernova H II Region around SN 1987A. ApJ, 452, L45
- Zanardo G., Staveley-Smith L., Ball L. et al. (2010). Multifrequency Radio Measurements of Supernova 1987A Over 22 Years. ApJ, 710, 1515
- Maggi P., Haberl F., Kavanagh P.J. et al. (2016). The population of X-ray supernova remnants in the Large Magellanic Cloud. A&A, 585, A162
- Ackermann M., Ajello M., Allafort A. et al. (2011). A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbub- ble. Science, 334, 1103
- Barger K.A., Lehner N. & Howk J.C. (2016). Down-the-barrel and Transverse Observations of the Large Magellanic Cloud: Evidence for a Symmetric Galactic Wind on the Near and Far Sides of the Galaxy. ApJ, 817, 91
- Corbet R.H.D., Chomiuk L., Coe M.J. et al. (2016). A Luminous Gamma-ray Binary in the Large Magellanic Cloud. ApJ, 829, 105
- Gelfand J., Breton R., Ng C.Y. et al. (2015). Pulsar Wind Nebulae in the SKA era. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 46
- Keane E., Bhattacharyya B., Kramer M. et al. (2015). A Cosmic Census of Radio Pulsars with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 40
- Indebetouw R. & SN1987A ALMA Cycle 0 Team (2014). ALMA resolves SN 1987A's dust factory and particle accelerator . In American Astronomical Society Meeting Abstracts #223, volume 223 of American Astronomical Society Meeting Abstracts, p. 354.37
- Mellinger A. (2009). A Color All-Sky Panorama Image of the Milky Way. PASP, 121, 1180
- Kim S., Staveley-Smith L., Dopita M.A. et al. (2003). A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined. ApJS, 148, 473
- Berezhko E.G., Ksenofontov L.T. & V ölk H.J. (2011). Expected Gamma-Ray Emission of Supernova Remnant SN 1987A. ApJ, 732, 58
- -(2015). Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A. ApJ, 810, 63
- Williams B.J., Borkowski K.J., Reynolds S.P. et al. (2011). Dusty Blast Waves of Two Young Large Magellanic Cloud Supernova Remnants: Constraints on Post-shock Compression. ApJ, 729, 65
- Park S., Hughes J.P., Slane P.O. et al. (2012). An X-Ray Study of Supernova Remnant N49 and Soft Gamma-Ray Repeater 0526-66 in the Large Magellanic Cloud. ApJ, 748, 117
- Williams B.J., Borkowski K.J., Reynolds S.P. et al. (2014). Spitzer Observations of the Type Ia Supernova Remnant N103B: Kepler's Older Cousin?. ApJ, 790, 139
- Borkowski K.J., Hendrick S.P. & Reynolds S.P. (2006). Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?. ApJ, 652, 1259
- Brantseg T., McEntaffer R.L., Bozzetto L.M. et al. (2014). A Multi-wavelength Look at the Young Plerionic Supernova Remnant 0540-69.3. ApJ, 780, 50
- Martin J., Torres D.F., Cillis A. et al. (2014). Is there room for highly magnetized pulsar wind nebulae among those non-detected at TeV?. MNRAS, 443, 138
- Bozzetto L.M., Filipović M.D., Crawford E.J. et al. (2012). Multifrequency study of the Large Magellanic Cloud supernova remnant J0529-6653 near pulsar B0529-66. MNRAS, 420, 2588
- Martin P. (2014). Interstellar gamma-ray emission from cosmic rays in star-forming galaxies. A&A, 564, A61
- Bykov A.M. (2014). Nonthermal particles and photons in starburst regions and superbubbles. Astron Astrophys Rev, 22, 77
- Urry C.M. & Padovani P. (1995). Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP, 107, 803
- Henri G. & Saug é L. (2006). The Bulk Lorentz Factor Crisis of TeV Blazars: Evidence for an Inhomogeneous Pileup Energy Distribution?. ApJ, 640, 185
- Inoue Y., Totani T. & Mori M. (2010). Prospects for a Very High-Energy Blazar Survey by the Next-Generation Cherenkov Telescopes. PASJ, 62, 1005
- Inoue Y. & Totani T. (2009). The Blazar Sequence and the Cosmic Gamma-ray Background Radiation in the Fermi Era. ApJ, 702, 523-536
- Inoue Y., Kalashev O.E. & Kusenko A. (2014). Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays. Astroparticle Physics, 54, 118
- Ackermann M. et al. (2011). The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. ApJ, 743, 171
- Hayashida M., Stawarz Ł., Cheung C.C. et al. (2013). Discovery of GeV Emission from the Circinus Galaxy with the Fermi Large Area Telescope. ApJ, 779, 131
- Di Mauro M., Calore F., Donato F. et al. (2014). Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei. ApJ, 780, 161
- Inoue Y. & Tanaka Y.T. (2016). Lower Bound on the Cosmic TeV Gamma-Ray Background Radiation. ApJ, 818, 187
- Atwood W., Albert A., Baldini L. et al. (2013). Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential. arXiv:1303.3514
- Szanecki M., Sobczy ńska D., Niedźwiecki A. et al. (2015). Monte Carlo simulations of alternative sky observation modes with the Cherenkov Telescope Array . Astroparticle Physics, 67, 33
- M ész áros P. (2013). Gamma ray bursts. Astroparticle Physics, 43, 134
- Kumar P. & Zhang B. (2015). The physics of gamma-ray bursts and relativistic jets. Phys. Rep., 561, 1
- Ellis J. & Mavromatos N.E. (2013). Probes of Lorentz violation. Astroparticle Physics, 43, 50
- Bednarek W. (2013). High energy γ-ray emission from compact galactic sources in the context of observations with the next generation Cherenkov Telescope Arrays. Astroparticle Physics, 43, 81
- B ühler R. & Blandford R. (2014). The surprising Crab pulsar and its nebula: a review. Reports on Progress in Physics, 77, 6, 066901
- Dubus G. (2015). Gamma-ray emission from binaries in context. Comptes Rendus Physique, 16, 661
- O'Brien P.T. & Smartt S.J. (2013). Interpreting signals from astrophysical transient experiments. Royal Society of London Philosophical Transactions Series A, 371, 20498
- Komossa S. (2015). Tidal disruption of stars by supermassive black holes: Status of observations. Journal of High Energy Astrophysics, 7, 148
- Brown P.J., Roming P.W.A. & Milne P.A. (2015). The first ten years of Swift supernovae. Journal of High Energy Astrophysics, 7, 111
- Katz J.I. (2016). Fast radio bursts, A brief review: Some questions, fewer answers. Modern Physics Letters A, 31, 1630013
- Halzen F. (2013). Pionic photons and neutrinos from cosmic ray accelerators. Astroparticle Physics, 43, 155
- Ahlers M. & Halzen F. (2015). High-energy cosmic neutrino puzzle: a review. Reports on Progress in Physics, 78, 12, 126901
- IceCube Collaboration, Aartsen M.G., Abbasi R. et al. (2013). The IceCube Neutrino Observatory Part I: Point Source Searches. arXiv:1309.6979
- The IceCube Collaboration, Aartsen M.G., Abraham K. et al. (2015). The IceCube Neutrino Observatory -Contributions to ICRC 2015 Part I: Point Source Searches. arXiv:1510.05222
- Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Localization and broadband follow-up of the gravitational-wave transient GW150914. arXiv:1602.08492
- Connaughton V., Burns E., Goldstein A. et al. (2016). Fermi GBM Observations of LIGO Gravitational Wave event GW150914. ApJ, 826, L6
- Fern ández R. & Metzger B.D. (2015). Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era. arXiv:1512.05435
- Doro M., Conrad J., Emmanoulopoulos D. et al. (2013). Dark matter and fundamental physics with the Cherenkov Telescope Array . Astropar- ticle Physics, 43, 189
- Bulgarelli A., Fioretti V., Zoli A. et al. (2015). The On-Site Analysis of the Cherenkov Telescope Array. arXiv:1509.01963
- Fioretti V., Bulgarelli A., Zoli A. et al. (2015). Real-Time Analysis sensitivity evaluation of the Cherenkov Telescope Array. proc. 34th ICRC, The Hague, Netherlands
- Gerard L. (2015). Divergent pointing with the Cherenkov Telescope Array for surveys and beyond. arXiv:1508.06197
- Abdo A.A., Ackermann M., Arimoto M. et al. (2009). Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science, 323, 1688
- Finke J.D., Razzaque S. & Dermer C.D. (2010). Modeling the Extragalactic Background Light from Stars and Dust. ApJ, 712, 238
- Kouveliotou C., Meegan C.A., Fishman G.J. et al. (1993). Identification of two classes of gamma-ray bursts. ApJ, 413, L101
- Mereghetti S., Pons J.A. & Melatos A. (2015). Magnetars: Properties, Origin and Evolution. Space Sci. Rev., 191, 315
- Torres D.F., Rea N., Esposito P. et al. (2012). A Magnetar-like Event from LS I +61 303 and Its Nature as a Gamma-Ray Binary . ApJ, 744, 106
- Tavani M., Bulgarelli A., Vittorini V. et al. (2011). Discovery of Powerful Gamma-Ray Flares from the Crab Nebula. Science, 331, 736
- Abdo A.A., Ackermann M., Ajello M. et al. (2011). Gamma-Ray Flares from the Crab Nebula. Science, 331, 739
- Taylor G.B. & Granot J. (2006). The Giant Flare from SGR 1806-20 and its Radio Afterglow. Modern Physics Letters A, 21, 2171
- Dubus G. (2013). Gamma-ray binaries and related systems. A&A Rev., 21, 64
- Tavani M., Bulgarelli A., Piano G. et al. (2009). Extreme particle acceleration in the microquasar CygnusX-3. Nature, 462, 620
- Zanin R., Fern ández-Barral A., de O ña Wilhelmi E. et al. (2016). Gamma rays detected from Cygnus X-1 with likely jet origin. A&A, 596, A55
- Acciari V.A., Aliu E., Araya M. et al. (2011). Gamma-Ray Observations of the Be/Pulsar Binary 1A 0535+262 During a Giant X-Ray Outburst. ApJ, 733, 96
- Stappers B.W., Archibald A.M., Hessels J.W.T. et al. (2014). A State Change in the Missing Link Binary Pulsar System PSR J1023+0038. ApJ, 790, 39
- Ackermann M., Ajello M., Albert A. et al. (2014). Fermi establishes classical novae as a distinct class of gamma-ray sources. Science, 345, 554
- Metzger B.D., Caprioli D., Vurm I. et al. (2016). Novae as Tevatrons: prospects for CTA and IceCube. MNRAS, 457, 1786
- Ackermann M., Ajello M., Asano K. et al. (2013). The First Fermi-LAT Gamma-Ray Burst Catalog. ApJS, 209, 11
- Gehrels N. & Cannizzo J.K. (2013). High-energy transients. Philosophical Transactions of the Royal Society of London Series A, 371, 20120270
- Kulkarni S.R. (2012). Cosmic Explosions (Optical Transients). arXiv:1202.2381
- Fender R.P. & Bell M.E. (2011). Radio transients: an antediluvian review. Bulletin of the Astronomical Society of India, 39, 315
- Fender R.P., Anderson G.E., Osten R. et al. (2015). A prompt radio transient associated with a gamma-ray superflare from the young M dwarf binary DG CVn. MNRAS, 446, L66
- Ghirlanda G., Salvaterra R., Campana S. et al. (2015). Unveiling the population of orphan γ-ray bursts. A&A, 578, A71
- Bloom J.S., Giannios D., Metzger B.D. et al. (2011). A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star . Science, 333, 203
- van Velzen S., Anderson G.E., Stone N.C. et al. (2016). A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science, 351, 62
- Chen X., G ómez-Vargas G.A. & Guillochon J. (2016). The Gamma-ray Afterglows of Tidal Disruption Events. MNRAS
- Campana S., Mangano V., Blustin A.J. et al. (2006). The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature, 442, 1008
- Soderberg A.M., Berger E., Page K.L. et al. (2008). An extremely luminous X-ray outburst at the birth of a supernova. Nature, 453, 469
- Kashiyama K., Murase K., Horiuchi S. et al. (2013). High-energy Neutrino and Gamma-Ray Transients from Trans-relativistic Supernova Shock Breakouts. ApJ, 769, L6
- Keane E.F., Johnston S., Bhandari S. et al. (2016). The host galaxy of a fast radio burst. Nature, 530, 453
- Williams P.K.G. & Berger E. (2016). No precise localization for FRB 150418: claimed radio transient is AGN variability. ApJ, 821, L22
- Spitler L.G., Scholz P., Hessels J.W.T. et al. (2016). A repeating fast radio burst. Nature, 531, 202
- Chatterjee S., Law C.J., Wharton R.S. et al. (2017). A direct localization of a fast radio burst and its host. Nature, 541, 58
- Lyubarsky Y. (2014). A model for fast extragalactic radio bursts. MNRAS, 442, L9
- Andersson N., Baker J., Belczynski K. et al. (2013). The transient gravitational-wave sky. Classical and Quantum Gravity, 30, 19, 193002
- Berger E. (2014). Short-Duration Gamma-Ray Bursts. ARA&A, 52, 43
- Keane E.F. & SUPERB Collaboration (2016). Fast Radio Bursts: Searches, Sensitivities and Implications. arXiv:1602.05165
- Ackermann M., Ajello M., Albert A. et al. (2013). The Fermi All-sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in Our Galaxy. ApJ, 771, 57
- Ackermann M. et al. (2011). Detection of a Spectral Break in the Extra Hard Component of GRB 090926A. ApJ, 729, 114
- Fermi Large Area Telescope Team, Ackermann M., Ajello M. et al. (2012). Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi. ApJ, 754, 121
- Ackermann M., Ajello M., Asano K. et al. (2014). Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science, 343, 42
- Kouveliotou C., Granot J., Racusin J.L. et al. (2013). NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission. ApJ, 779, L1
- Atwood W.B., Baldini L., Bregeon J. et al. (2013). New Fermi-LAT Event Reconstruction Reveals More High-energy Gamma Rays from Gamma-Ray Bursts. ApJ, 774, 76
- Abdo A.A., Ackermann M., Ajello M. et al. (2009). A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 462, 331
- Vasileiou V., Jacholkowska A., Piron F. et al. (2013). Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D, 87, 12, 122001
- Acciari V.A., Aliu E., Arlen T. et al. (2011). VERITAS Observations of Gamma-Ray Bursts Detected by Swift. ApJ, 743, 62
- Aleksić J., Ansoldi S., Antonelli L.A. et al. (2014). MAGIC upper limits on the GRB 090102 afterglow. MNRAS, 437, 3103
- H.E.S.S. Collaboration, Abramowski A., Aharonian F. et al. (2014). Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.. A&A, 565, A16
- Gilmore R.C., Bouvier A., Connaughton V. et al. (2013). IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array . Experimental Astronomy, 35, 413
- Kakuwa J., Murase K., Toma K. et al. (2012). Prospects for detecting gamma-ray bursts at very high energies with the Cherenkov Telescope Array . MNRAS, 425, 514
- Abeysekara A.U., Aguilar J.A., Aguilar S. et al. (2012). On the sensitivity of the HAWC observatory to gamma-ray bursts. Astroparticle Physics, 35, 641
- Taboada I. & Gilmore R.C. (2014). Prospects for the detection of GRBs with HAWC. Nuclear Instruments and Methods in Physics Research A, 742, 276
- Malyshev D., Zdziarski A.A. & Chernyakova M. (2013). High-energy gamma-ray emission from Cyg X-1 measured by Fermi and its theoretical implications. MNRAS, 434, 2380
- Bodaghee A., Tomsick J.A., Pottschmidt K. et al. (2013). Gamma-Ray Observations of the Microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with the Fermi Large Area Telescope. ApJ, 775, 98
- Mariotti M. (2010). No significant enhancement in the VHE gamma-ray flux of the Crab Nebula measured by MAGIC in September 2010. The Astronomer's Telegram, 2967, 1
- Ong R.A. (2010). Search for an Enhanced TeV Gamma-Ray Flux from the Crab Nebula with VERITAS. The Astronomer's Telegram, 2968, 1
- H. E. S. S. Collaboration, Abramowski A., Aharonian F. et al. (2014). H.E.S.S. observations of the Crab during its March 2013 GeV gamma-ray flare. A&A, 562, L4
- Aleksić J., Antonelli L.A., Antoranz P. et al. (2010). Magic Constraints on γ-ray Emission from Cygnus X-3. ApJ, 721, 843
- Ahnen M.L., Ansoldi S., Antonelli L.A. et al. (2015). Very high-energy γ-ray observations of novae and dwarf novae with the MAGIC telescopes. A&A, 582, A67
- Albert J., Aliu E., Anderhub H. et al. (2007). Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Binary Cygnus X-1.
- ApJ, 665, L51
- Peng F.K., Tang Q.W. & Wang X.Y. (2016). Search for High-energy Gamma-ray Emission from Tidal Disruption Events with the Fermi Large Area Telescope. ApJ, 825, 47
- Aliu E., Arlen T., Aune T. et al. (2011). VERITAS Observations of the Unusual Extragalactic Transient Swift J164449.3+573451. ApJ, 738, L30
- Aleksić J., Antonelli L.A., Antoranz P. et al. (2013). Very high energy gamma-ray observation of the peculiar transient event Swift J1644+57 with the MAGIC telescopes and AGILE. A&A, 552, A112
- H. E. S. S. Collaboration, Abdalla H., Abramowski A. et al. (2017). First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418. A&A, 597, A115
- Santander M., VERITAS f.t. & IceCube Collaborations (2015). Searching for TeV gamma-ray emission associated with IceCube high-energy neutrinos using VERITAS. proc. 34th ICRC The Hague, Netherlands
- Sch üssler F., Balzer A., Brun F. et al. (2015). The H.E.S.S. multi-messenger program. proc. 34th ICRC The Hague, Netherlands
- Adri án-Martínez S., Ageron M., Albert A. et al. (2016). Optical and X-ray early follow-up of ANTARES neutrino alerts. J. Cosmology Astropart. Phys., 2, 062
- IceCube Collaboration, Aartsen M.G., Abraham K. et al. (2016). Very High-Energy Gamma-Ray Follow-Up Program Using Neutrino Triggers from IceCube. arXiv:1610.01814
- BAIKAL-GVD Scientific-Technical Report. http://baikalweb.jinr.ru/gvd/BAIKAL-GVD_En.pdf
- The IceCube-Gen2 Collaboration, :, Aartsen M.G. et al. (2015). IceCube-Gen2 -The Next Generation Neutrino Observatory at the South Pole: Contributions to ICRC 2015. arXiv:1510.05228
- ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration et al. (2016). High-energy Neutrino follow-up search of Gravi- tational Wave Event GW150914 with ANTARES and IceCube. arXiv:1602.05411
- Perna R., Lazzati D. & Giacomazzo B. (2016). Short Gamma-Ray Bursts from the Merger of Two Black Holes. ApJ, 821, L18
- Lehner L. & Pretorius F. (2014). Numerical Relativity and Astrophysics. ARA&A, 52, 661
- Kyutoku K., Ioka K. & Shibata M. (2014). Ultrarelativistic electromagnetic counterpart to binary neutron star mergers. MNRAS, 437, L6
- Tanvir N.R., Levan A.J., Fruchter A.S. et al. (2013). A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B. Nature, 500, 547
- Godet O., Nasser G., Atteia J.. et al. (2014). The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 9144 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
- Finnegan G. & for the VERITAS Collaboration (2011). Orbit Mode observation Technique Developed for VERITAS. proc. Fermi Symposium 2011
- Greiner J., Kr ühler T., Klose S. et al. (2011). The nature of "dark" gamma-ray bursts. A&A, 526, A30
- Bagoly Z., Bal ázs L.G., Horv áth I. et al. (2008). Different satellites-different GRB redshift distributions?. In Y.F. Huang, Z.G. Dai & B. Zhang (editors), American Institute of Physics Conference Series, volume 1065 of American Institute of Physics Conference Series, pp. 119-122
- Loh A., Corbel S., Dubus G. et al. (2016). High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst. MNRAS, 462, L111
- Abbott B.P., Abbott R., Abbott T.D. et al. (2016). The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Sur- rounding GW150914. arXiv:1602.03842
- Kneiske T.M., Bretz T., Mannheim K. et al. (2004). Implications of cosmological gamma-ray absorption. II. Modification of gamma-ray spectra. A&A, 413, 807
- Gilmore R.C., Somerville R.S., Primack J.R. et al. (2012). Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. MNRAS, 422, 3189
- Inoue Y., Inoue S., Kobayashi M.A.R. et al. (2013). Extragalactic Background Light from Hierarchical Galaxy Formation: Gamma-Ray Attenu- ation up to the Epoch of Cosmic Reionization and the First Stars. ApJ, 768, 197
- Kohri K., Ohira Y. & Ioka K. (2012). Gamma-ray flare and absorption in the Crab nebula: lovely TeV-PeV astrophysics. MNRAS, 424, 2249
- Fermi LAT Collaboration, Abdo A.A., Ackermann M. et al. (2009). Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3. Science, 326, 1512
- Padovani P. & Resconi E. (2014). Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?. MNRAS, 443, 474
- Gaisser T.K. (1990). Cosmic rays and particle physics, (Cambridge University Press)
- Antoni T., Apel W.D., Badea A.F. et al. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24, 1
- Hillas A.M. (2005). TOPICAL REVIEW: Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?. Journal of Physics G Nuclear Physics, 31, 95
- Drury L.O. (1983). An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Reports on Progress in Physics, 46, 973
- Bell A.R. (2004). Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS, 353, 550
- Drury L.O., Aharonian F.A. & Voelk H.J. (1994). The gamma-ray visibility of supernova remnants. A test of cosmic ray origin. A&A, 287, 959
- Ackermann M., Ajello M., Allafort A. et al. (2013). Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 339, 807
- Aharonian F.A. (2013). Gamma rays from supernova remnants. Astroparticle Physics, 43, 71
- Bell A.R., Schure K.M., Reville B. et al. (2013). Cosmic-ray acceleration and escape from supernova remnants. MNRAS, 431, 415
- Gabici S. & Aharonian F.A. (2007). Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos. ApJ, 665, L131
- Ellison D.C., Patnaude D.J., Slane P. et al. (2010). Efficient Cosmic Ray Acceleration, Hydrodynamics, and Self-Consistent Thermal X-Ray Emission Applied to Supernova Remnant RX J1713.7-3946. ApJ, 712, 287
- Casanova S., Jones D.I., Aharonian F.A. et al. (2010). Modeling the Gamma-Ray Emission Produced by Runaway Cosmic Rays in the Environment of RX J1713.7-3946. PASJ, 62, 1127
- Stecker F.W. (1971). Cosmic gamma rays. NASA Special Publication, 249
- Dermer C.D. (1986). Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. A&A, 157, 223
- Aharonian F., Akhperjanian A.G., Barres de Almeida U. et al. (2008). Energy Spectrum of Cosmic-Ray Electrons at TeV Energies. Physical Review Letters, 101, 26, 261104
- Fukui Y., Moriguchi Y., Tamura K. et al. (2003). Discovery of Interacting Molecular Gas toward the TeV Gamma-Ray Peak of the SNR G 347.3-0.5. PASJ, 55, L61
- Koyama K., Petre R., Gotthelf E.V. et al. (1995). Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378, 255
- Enomoto R., Tanimori T., Naito T. et al. (2002). The acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946. Nature, 416, 823
- Aharonian F.A., Akhperjanian A.G., Aye K.M. et al. (2004). High-energy particle acceleration in the shell of a supernova remnant. Nature, 432, 75
- Aharonian F., Akhperjanian A.G., Bazer-Bachi A.R. et al. (2005). Detection of TeV γ-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. A&A, 437, L7
- Acciari V.A., Aliu E., Arlen T. et al. (2011). Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant. ApJ, 730, L20
- Albert J., Aliu E., Anderhub H. et al. (2007). Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. A&A, 474, 937
- Abdo A.A., Ackermann M., Ajello M. et al. (2011). Observations of the Young Supernova Remnant RX J1713.7-3946 with the Fermi Large Area Telescope. ApJ, 734, 28
- Fukui Y. (2013). Molecular and Atomic Gas in the Young TeV γ-Ray SNRs RX J1713.7-3946 and RX J0852.0-4622; Evidence for the Hadronic Production of γ-Rays. In D.F. Torres & O. Reimer (editors), Cosmic Rays in Star-Forming Environments, volume 34 of Advances in Solid State Physics, p. 249
- Sano H., Fukuda T., Yoshiike S. et al. (2014). A detailed study of non-thermal X-ray properties and interstellar gas toward the \gamma-ray supernova remnant RX J1713.7-3946. arXiv:1401.7418
- H. E. S. S. Collaboration, Abdalla H., Abdalla H. et al. (2016). H.E.S.S. observations of RX J1713.7-3946 with improved angular and spectral resolution; evidence for gamma-ray emission extending beyond the X-ray emitting shell. arXiv:1609.08671
- Berezhko E.G., P ühlhofer G. & V ölk H.J. (2009). Theory of cosmic ray and γ-ray production in the supernova remnant RX J0852.0-4622. A&A, 505, 641
- H. E. S. S. Collaboration, Abdalla H., Abramowski A. et al. (2016). Deeper H.E.S.S. Observations of Vela Junior (RX J0852.0-4622): Morphol- ogy Studies and Resolved Spectroscopy. arXiv:1610.01863
- Pedaletti G., Torres D.F., Gabici S. et al. (2013). On the potential of the Cherenkov Telescope Array for the study of cosmic-ray diffusion in molecular clouds. A&A, 550, A123
- Peng F.K., Wang X.Y., Liu R.Y. et al. (2016). First Detection of GeV Emission from an Ultraluminous Infrared Galaxy: Arp 220 as Seen with the Fermi Large Area Telescope. ApJ, 821, L20
- Griffin R.D., Dai X. & Thompson T.A. (2016). Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220. ApJ, 823, L17
- Kennicutt R.C. & Evans N.J. (2012). Star Formation in the Milky Way and Nearby Galaxies. ARA&A, 50, 531
- Socrates A., Davis S.W. & Ramirez-Ruiz E. (2008). The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. ApJ, 687, 202
- Jubelgas M., Springel V., Enßlin T. et al. (2008). Cosmic ray feedback in hydrodynamical simulations of galaxy formation. A&A, 481, 33
- Ceccarelli C., Hily-Blant P., Montmerle T. et al. (2011). Supernova-enhanced Cosmic-Ray Ionization and Induced Chemistry in a Molecular Cloud of W51C. ApJ, 740, L4
- Papadopoulos P.P. & Thi W.F. (2013). The Initial Conditions of Star Formation: Cosmic Rays as the Fundamental Regulators. In D.F. Torres & O. Reimer (editors), Cosmic Rays in Star-Forming Environments, volume 34 of Advances in Solid State Physics, p. 41
- Booth C.M., Agertz O., Kravtsov A.V. et al. (2013). Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. ApJ, 777, L16
- Salem M., Bryan G.L. & Hummels C. (2014). Cosmological Simulations of Galaxy Formation with Cosmic Rays. ApJ, 797, L18
- Aharonian F., Akhperjanian A., Beilicke M. et al. (2002). An unidentified TeV source in the vicinity of Cygnus OB2. A&A, 393, L37
- Abramowski A., Acero F., Aharonian F. et al. (2012). Discovery of extended VHE γ-ray emission from the vicinity of the young massive stellar cluster Westerlund 1. A&A, 537, A114
- Casse M. & Paul J.A. (1980). Local gamma rays and cosmic-ray acceleration by supersonic stellar winds. ApJ, 237, 236
- Meier D.S., Walter F., Bolatto A.D. et al. (2015). Alma multi-line imaging of the nearby starburst ngc 253. The Astrophysical Journal, 801, 1, 63
- Kennicutt Jr. R.C. (1998). Star Formation in Galaxies Along the Hubble Sequence. ARA&A, 36, 189
- Ackermann M., Ajello M., Allafort A. et al. (2012). GeV Observations of Star-forming Galaxies with the Fermi Large Area Telescope. ApJ, 755, 164
- Abramowski A., Acero F., Aharonian F. et al. (2012). Spectral Analysis and Interpretation of the γ-Ray Emission from the Starburst Galaxy NGC 253. ApJ, 757, 158
- Reitberger K., Reimer A., Reimer O. et al. (2015). The first full orbit of η Carinae seen by Fermi. A&A, 577, A100
- Preibisch T., Ratzka T., Kuderna B. et al. (2011). Deep wide-field near-infrared survey of the Carina Nebula. A&A, 530, A34
- Hamaguchi K., Petre R., Matsumoto H. et al. (2007). Suzaku Observation of Diffuse X-Ray Emission from the Carina Nebula. PASJ, 59, 151
- Ezoe Y., Hamaguchi K., Gruendl R.A. et al. (2009). Suzaku and XMM-Newton Observations of Diffuse X-Ray Emission from the Eastern Tip Region of the Carina Nebula. PASJ, 61, 123
- Townsley L.K., Broos P.S., Chu Y.H. et al. (2011). The Chandra Carina Complex Project: Deciphering the Enigma of Carina's Diffuse X-ray Emission. ApJS, 194, 15
- HESS Collaboration, Abramowski A., Acero F. et al. (2012). HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae. MNRAS, 424, 128
- Abramowski A., Acero F., Aharonian F. et al. (2011). Revisiting the Westerlund 2 field with the HESS telescope array. A&A, 525, A46+
- Bartoli B., Bernardini P., Bi X.J. et al. (2014). Identification of the TeV Gamma-Ray Source ARGO J2031+4157 with the Cygnus Cocoon. ApJ, 790, 152
- Popkow A. & for the VERITAS Collaboration (2015). The VERITAS Survey of the Cygnus Region of the Galaxy. arXiv:1508.06684
- Kothes R. & Dougherty S.M. (2007). The distance and neutral environment of the massive stellar cluster Westerlund 1. A&A, 468, 993
- Ohm S., Hinton J.A. & White R. (2013). γ-ray emission from the Westerlund 1 region. MNRAS, 434, 2289
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33. A&A, 523, L2
- Dorfi E.A. & Breitschwerdt D. (2012). Time-dependent galactic winds. I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration. A&A, 540, A77
- V ölk H.J., Klein U. & Wielebinski R. (1989). M82, the Galaxy, and the dependence of cosmic ray energy production on the supernova rate. A&A, 213, L12
- VERITAS Collaboration, Acciari V.A., Aliu E. et al. (2009). A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature, 462, 770
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi. ApJ, 709, L152
- Domingo-Santamaría E. & Torres D.F. (2005). High energy γ-ray emission from the starburst nucleus of NGC 253. A&A, 444, 403
- Rephaeli Y., Arieli Y. & Persic M. (2010). High-energy emission from the starburst galaxy NGC 253. MNRAS, 401, 473
- Thompson T.A., Quataert E., Waxman E. et al. (2006). Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation. ApJ, 645, 186
- Lacki B.C., Thompson T.A., Quataert E. et al. (2011). On the GeV and TeV Detections of the Starburst Galaxies M82 and NGC 253. ApJ, 734, 107
- Murphy E.J., Porter T.A., Moskalenko I.V. et al. (2012). Characterizing Cosmic-Ray Propagation in Massive Star-forming Regions: The Case of 30 Doradus and the Large Magellanic Cloud. ApJ, 750, 126
- Persic M., Rephaeli Y. & Arieli Y. (2008). Very-high-energy emission from M 82. A&A, 486, 143
- Torres D.F., Cillis A., Lacki B. et al. (2012). Building up the spectrum of cosmic rays in star-forming regions. MNRAS, 423, 822
- Mannheim K., Els ässer D. & Tibolla O. (2012). Gamma-rays from pulsar wind nebulae in starburst galaxies. Astroparticle Physics, 35, 797
- Ohm S. & Hinton J.A. (2013). Non-thermal emission from pulsar-wind nebulae in starburst galaxies. MNRAS, 429, L70
- Sanders D.B. & Mirabel I.F. (1996). Luminous Infrared Galaxies. ARA&A, 34, 749
- Pavlidou V. & Fields B.D. (2002). The Guaranteed Gamma-Ray Background. ApJ, 575, L5
- Smith H.E., Lonsdale C.J., Lonsdale C.J. et al. (1998). A Starburst Revealed-Luminous Radio Supernovae in the Nuclei of ARP 220. ApJ, 493, L17
- Torres D.F. (2004). Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220. ApJ, 617, 966
- Torres D.F. & Domingo-Santamaría E. (2005). Some Comments on the High Energy Emission from Regions of Star Formation Beyond the Galaxy . Modern Physics Letters A, 20, 2827
- Albert J., Aliu E., Anderhub H. et al. (2007). First Bounds on the Very High Energy γ-Ray Emission from Arp 220. ApJ, 658, 245
- Fleischhack, H. and for the VERITAS Collaboration (2015). Upper limits on the VHE gamma-ray flux from the ULIRG Arp 220 and other galaxies with VERITAS. proc. 34th ICRC, The Hague, Netherlands
- Kn ödlseder J., Mayer M., Deil C. et al. (2016). GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data. A&A, 593, A1
- Inoue Y. (2011). High Energy Gamma-ray Absorption and Cascade Emission in Nearby Starburst Galaxies. ApJ, 728, 11
- Armstrong T., Brown A.M., Chadwick P.M. et al. (2017). DBSCAN re-applied to Pass 8 Fermi-LAT data above 100 GeV . AIP Conf. Proc., 1792, 1, 070001
- Zech A., Cerruti M. & for the CTA consortium (2013). Signatures of relativistic protons in CTA blazar spectra. Proc. of the 33rd ICRC, Rio de Janeiro, Brazil. Astro-ph/1307.2232
- Cerruti M., Zech A., Boisson C. et al. (2015). A hadronic origin for ultra-high-frequency-peaked BL Lac objects. MNRAS, 448, 910
- Zech A., Cerruti M. & Mazin D. (2017). Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. A&A, 602, A25
- Sol H., Zech A., Boisson C. et al. (2013). Prospect on intergalactic magnetic field measurements with gamma-ray instruments. In A.G. Koso- vichev, E. de Gouveia Dal Pino & Y. Yan (editors), Solar and Astrophysical Dynamos and Magnetic Activity, volume 294 of IAU Symposium, pp. 459-470
- Hardcastle M.J. & Croston J.H. (2011). Modelling TeV γ-ray emission from the kiloparsec-scale jets of Centaurus A and M87 . MNRAS, 415, 133
- Franceschini A., Rodighiero G. & Vaccari M. (2008). Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. A&A, 487, 837
- H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2013). Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S.. A&A, 550, A4
- Ackermann M. et al. (2012). The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars. Science, 338, 1190
- Blandford R.D. & Znajek R.L. (1977). Electromagnetic extraction of energy from Kerr black holes. MNRAS, 179, 433
- Ghisellini G., Tavecchio F., Maraschi L. et al. (2014). The power of relativistic jets is larger than the luminosity of their accretion disks. Nature, 515, 376
- Ghisellini G., Tavecchio F., Foschini L. et al. (2010). General physical properties of bright Fermi blazars. MNRAS, 402, 497
- B öttcher M., Reimer A., Sweeney K. et al. (2013). Leptonic and Hadronic Modeling of Fermi-detected Blazars. ApJ, 768, 54
- Cerruti M., Dermer C.D., Lott B. et al. (2013). Gamma-Ray Blazars near Equipartition and the Origin of the GeV Spectral Break in 3C 454.3. ApJ, 771, L4
- Dermer C.D., Cerruti M., Lott B. et al. (2014). Equipartition Gamma-Ray Blazars and the Location of the Gamma-Ray Emission Site in 3C 279. ApJ, 782, 82
- Poutanen J. & Stern B. (2010). GeV breaks in blazars as a result of gamma-ray absorption within the broad-line region. ApJ Lett, 717, L118
- Senturk G.D., Errando M., Boettcher M. et al. (2013). Gamma-ray observational properties of tev-detected blazars. ApJ, 764, 119
- Brown A.M. (2013). Locating the γ-ray emission region of the flat spectrum radio quasar PKS 1510-089. MNRAS, 431, 824
- Abeysekara A.U., Archambault S., Archer A. et al. (2015). Gamma-Rays from the Quasar PKS 1441+25: Story of an Escape. ApJ, 815, L22
- Lindfors E., Nilsson K., Barres de Almeida U. et al. (2013). VHE gamma-ray emission from the FSRQs observed by the MAGIC telescopes. eConf C121028. Proc. of the 2012 Fermi Symposium -eConf C121028, astro-ph/1303.2102
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band. ApJ, 710, 1271
- Costamante L., Ghisellini G., Giommi P. et al. (2001). Extreme synchrotron BL Lac objects. Stretching the blazar sequence. A&A, 371, 512
- Bonnoli G., Tavecchio F., Ghisellini G. et al. (2015). An emerging population of BL Lacs with extreme properties: towards a class of EBL and cosmic magnetic field probes?. MNRAS, 451, 611
- Katarzy ński K., Ghisellini G., Tavecchio F. et al. (2006). Hard TeV spectra of blazars and the constraints to the infrared intergalactic background. MNRAS, 368, L52
- Lefa E., Rieger F.M. & Aharonian F. (2011). Formation of Very Hard Gamma-Ray Spectra of Blazars in Leptonic Models. ApJ, 740, 64
- Asano K., Takahara F., Kusunose M. et al. (2014). Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration. ApJ, 780, 64
- Murase K., Dermer C.D., Takami H. et al. (2012). Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV Gamma-Ray Observations. ApJ, 749, 63
- Biteau J. & Giebels B. (2012). The minijets-in-a-jet statistical model and the rms-flux correlation. A&A, 548, A123 References
- McHardy I. (2011). The origin of high energy variability in blazars. PoS(AGN 2011)017. Proc. of the "AGN Physics in the CTA Era" workshop, Toulouse, France
- Marscher A.P. (2014). Turbulent, extreme multi-zone model for simulating flux and polarization variability in blazars. ApJ, 780, 87
- de Gouveia Dal Pino E.M., Piovezan P.P. & Kadowaki L.H.S. (2010). The role of magnetic reconnection on jet/accretion disk systems. A&A, 518, A5
- Giannios D. (2013). Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. MNRAS, 431, 355
- Kadowaki L.H.S., de Gouveia Dal Pino E.M. & Singh C.B. (2015). The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs. ApJ, 802, 113
- Singh C.B., de Gouveia Dal Pino E.M. & Kadowaki L.H.S. (2015). On the Role of Fast Magnetic Reconnection in Accreting Black Hole Sources. ApJ, 799, L20
- Khiali B., de Gouveia Dal Pino E.M. & Sol H. (2015). Particle Acceleration and gamma-ray emission due to magnetic reconnection around the core region of radio galaxies. arXiv:1504.07592
- Osmanov Z. (2010). On the simultaneous generation of high energy emission and submillimeter/infrared radiation from active galactic nuclei. ApJ, 721, 318
- Levinson A. & Rieger F.M. (2011). Variable TeV emission as a manifestation of jet formation in M87?. ApJ, 730, 123
- Aleksić J., Antonelli L.A., Antoranz P. et al. (2014). Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310. A&A, 563, A91
- Khiali B., de Gouveia Dal Pino E.M. & del Valle M.V. (2015). A magnetic reconnection model for explaining the multiwavelength emission of the microquasars Cyg X-1 and Cyg X-3. MNRAS, 449, 34
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Gamma-Ray Imaging of a Radio Galaxy. Science, 328, 725
- Ackermann M., Ajello M., Baldini L. et al. (2016). Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A. ApJ, 826, 1
- Acciari V.A., Aliu E., Arlen T. et al. (2009). Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy . Science, 325, 444
- Cheung C.C., Harris D.E. & Stawarz L. (2007). Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission. ApJ, 663, L65
- Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A. ApJ, 719, 1433
- Sahakyan N., Yang R., Aharonian F.A. et al. (2013). Evidence for a Second Component in the High-energy Core Emission from Centaurus A?. ApJ, 770, L6
- Brown A.M., B Å'hm C., Graham J. et al. (2017). Discovery of a new extragalactic population of energetic particles. Phys. Rev. D, 95, 6, 063018
- Sahu S., Zhang B. & Fraija N. (2012). Hadronic-origin TeV gamma-rays and ultrahigh energy cosmic rays from Centaurus A. Phys. Rev. D, 85, 4, 043012
- Petropoulou M., Lefa E., Dimitrakoudis S. et al. (2014). One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited. A&A, 562, A12
- Cerruti M., Zech A., Emery G. et al. (2016). Hadronic modeling of TeV AGN: gammas and neutrinos. arXiv:1610.00255
- Abdo A., Ackermann M., Ajello M. et al. (2009). Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei. ApJ, 707, L142
- D'Ammando F., Orienti M., Finke J. et al. (2012). SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy. MNRAS, 426, 317
- Foschini L. et al. (2011). The July 2010 outburst of the NLS1 PMN J0948+0022. proc. of the 3rd Fermi symposium, Rome, Italy. Astro- ph/1110.5649
- D'Ammando F., Tosti G., Orienti M. et al. (2013). Four Years of Fermi LAT Observations of Narrow-Line Seyfert 1 Galaxies. arXiv:1303.3030
- Marconi A. et al. (2008). Weighing black holes from zero to high redshift. ApJ, 678, 693
- Calderone G., Ghisellini G., Colpi M. et al. (2013). Black hole mass estimate for a sample of radio-loud narrow-line seyfert 1 galaxies. MNRAS, 431, 210
- Neronov A. & Aharonian F.A. (2007). Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87 . ApJ, 671, 85
- Rieger F.M. & Aharonian F.A. (2008). Variable VHE gamma-ray emission from non-blazar AGNs. A&A, 479, L5
- Istomin Y.N. & Sol H. (2009). Acceleration of particles in the vicinity of a massive black hole. Ap&SS, 321, 57
- Biteau J. & Williams D.A. (2015). The Extragalactic Background Light, the Hubble Constant, and Anomalies: Conclusions from 20 Years of TeV Gamma-ray Observations. ApJ, 812, 60
- Domínguez A. & Prada F. (2013). Measurement of the Expansion Rate of the Universe from γ-Ray Attenuation. ApJ, 771, L34
- Widrow L.M. (2002). Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics, 74, 775
- Kulsrud R.M. & Zweibel E.G. (2008). On the origin of cosmic magnetic fields. Rep. Prog. Phys., 71, 4, 046901
- Kandus A., Kunze K.E. & Tsagas C.G. (2011). Primordial magnetogenesis. Phys. Rep., 505, 1, 1
- Widrow L.M., Ryu D., Schleicher D.R.G. et al. (2012). The first magnetic fields. Space Sci. Rev., 166, 37
- Ryu D., Schleicher D.R.G., Treumann R.A. et al. (2012). Magnetic Fields in the Large-Scale Structure of the Universe. Space Sci. Rev, 166, 1
- Kim K.T., Kronberg P.P., Giovannini G. et al. (1989). Discovery of intergalactic radio emission in the Coma-A1367 supercluster . Nature, 341, 720
- Elyiv A., Neronov A. & Semikoz D.V. (2009). Gamma-ray induced cascades and magnetic fields in the intergalactic medium. Phys. Rev. D, 80, 2, 023010
- Dermer C.D., Cavadini M., Razzaque S. et al. (2011). Time Delay of Cascade Radiation for TeV Blazars and the Measurement of the Intergalactic Magnetic Field. ApJ, 733, L21
- Chen W., Buckley J.H. & Ferrer F. (2015). Search for GeV γ -Ray Pair Halos Around Low Redshift Blazars. Physical Review Letters, 115, 21, 211103
- Barkov M.V., Aharonian F.A., Bogovalov S.V. et al. (2012). Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. ApJ, 749, 119
- Essey W. & Kusenko A. (2010). A new interpretation of the gamma-ray observations of distant active galactic nuclei. Astroparticle Physics, 33, 81
- Essey W., Kalashev O., Kusenko A. et al. (2011). Role of line-of-sight cosmic-ray interactions in forming the spectra of distant blazars in tev gamma rays and high-energy neutrinos. ApJ, 731, 51
- Takami H., Murase K. & Dermer C.D. (2013). Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-high-energy Gamma- Ray Emission of Distant Hard-spectrum Blazars. ApJ, 771, L32
- Abdo A.A., Ackermann M., Ajello M. et al. (2011). Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution. ApJ, 736, 131
- Joshi J.C. & Gupta N. (2013). Testing hadronic models of gamma ray production at the core of Cen A. Phys. Rev. D, 87, 2, 023002
- Rieger F.M. & Aharonian F.A. (2009). Centaurus A as TeV gamma-ray and possible UHE cosmic-ray source. A&A, 506, L41
- Yang R., Sahakyan N., de Ona Wilhelmi E. et al. (2012). Deep observation of the giant radio lobes of Centaurus A with the Fermi Large Area Telescope. A&A, 542, 19
- de Angelis A., Roncadelli M. & Mansutti O. (2007). Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?. Phys. Rev. D, 76, 12, 121301
- Simet M., Hooper D. & Serpico P.D. (2008). Milky way as a kiloparsec-scale axionscope. Phys. Rev. D, 77, 6, 063001
- S ánchez-Conde M.A., Paneque D., Bloom E. et al. (2009). Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources. Phys. Rev. D, 79, 12, 123511
- de Angelis A., Mansutti O., Persic M. et al. (2009). Photon propagation and the very high energy γ-ray spectra of blazars: how transparent is the Universe?. MNRAS, 394, L21
- de Angelis A., Galanti G. & Roncadelli M. (2011). Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D, 84, 10, 105030
- Domínguez A., S ánchez-Conde M.A. & Prada F. (2011). Axion-like particle imprint in cosmological very-high-energy sources. J. Cosmology Astropart. Phys., 11, 020
- De Angelis A., Galanti G. & Roncadelli M. (2013). Transparency of the Universe to gamma-rays. MNRAS, 432, 3245
- Galanti G., Roncadelli M., De Angelis A. et al. (2015). Axion-like particles explain the unphysical redshift-dependence of AGN gamma-ray spectra. arXiv:1503.04436
- Horns D. & Meyer M. (2012). Indications for a pair-production anomaly from the propagation of VHE gamma-rays. J. Cosmology Astropart. Phys., 2, 33
- Horns D. & Meyer M. (2013). Pair-production opacity at high and very-high gamma-ray energies. DESY-PROC-2013-04. Astro-ph/1309.3846
- Rubtsov G.I. & Troitsky S.V. (2014). Breaks in gamma-ray spectra of distant blazars and transparency of the universe. Soviet Journal of Experimental and Theoretical Physics Letters, 100, 355
- Sanchez D.A., Fegan S. & Giebels B. (2013). Evidence for a cosmological effect in gamma-ray spectra of BL Lacs. Astron. Astrophys., 554, A75
- Domínguez A. & Ajello M. (2015). Spectral Analysis of Fermi-LAT Blazars above 50 GeV . ApJ, 813, L34
- Horns D., Maccione L., Meyer M. et al. (2012). Hardening of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles. Phys. Rev. D, 86, 7, 075024
- Meyer M., Montanino D. & Conrad J. (2014). On detecting oscillations of gamma rays into axion-like particles in turbulent and coherent magnetic fields. JCAP, 9, 3, 003
- Tavecchio F., Roncadelli M. & Galanti G. (2015). Photons to axion-like particles conversion in active galactic nuclei. Physics Letters B, 744, 375
- Tavecchio F., Roncadelli M., Galanti G. et al. (2012). Evidence for an axion-like particle from pks 1222+216?. Phys. Rev. D, 86, 8, 085036
- Meyer M. & Conrad J. (2014). Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities. J. Cosmology Astropart. Phys., 12, 016
- Abramowski A., Acero F., Aharonian F. et al. (2013). Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum. Phys. Rev. D, 88, 10, 102003
- Ajello M., Albert A., Anderson B. et al. (2016). Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Physical Review Letters, 116, 16, 161101
- Abdo A.A., Ackermann M., Ajello M. et al. (2009). A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 462, 331
- H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2011). Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944. Astroparticle Physics, 34, 738
- Kifune T. (1999). Invariance violation extends the cosmic ray horizon?. ApJ, 518, L21
- Fairbairn M., Nilsson A., Ellis J. et al. (2014). The CTA sensitivity to Lorentz-violating effects on the gamma-ray horizon. J. Cosmology Astropart. Phys., 6, 005
- D'Ammando F., Orienti M., Larsson J. et al. (2015). The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619. MNRAS, 452, 520
- D'Ammando F., Orienti M., Finke J. et al. (2016). A Panchromatic View of Relativistic Jets in Narrow-Line Seyfert 1 Galaxies. Galaxies, 4, 11
- MAGIC Collaboration, Albert J., Aliu E. et al. (2008). Very-High-Energy gamma rays from a Distant Quasar: How Transparent Is the Universe?. Science, 320, 1752
- Ackermann M. et al. (2013). The First FERMI-LAT Catalog of sources above 10 GeV . ApJS, 209, 34
- Shaw M.S., Romani R.W., Cotter G. et al. (2013). Spectroscopy of the Largest Ever γ-Ray-selected BL Lac Sample. ApJ, 764, 135
- Pita A., Goldoni P., Boisson C. et al. (2014). Spectroscopy of high-energy bl lacertae objects with x-shooter on the vlt. A&A, 565, A12
- H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2012). A multiwavelength view of the flaring state of PKS 2155-304 in 2006. A&A, 539, A149
- Marscher A.P., Jorstad S.G., D'Arcangelo F.D. et al. (2008). The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature, 452, 966
- Marscher A.P., Jorstad S.G., Larionov V.M. et al. (2010). Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-Waveband Monitoring During Strong Gamma-Ray Activity. ApJ, 710, L126
- Blinov D., Pavlidou V., Papadakis I. et al. (2016). RoboPol: do optical polarization rotations occur in all blazars?. MNRAS, 462, 1775
- Meyer M., Conrad J. & Dickinson H. (2016). Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields. ApJ, 827, 147
- Pinzke A. & Pfrommer C. (2010). Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution. MNRAS, 409, 449
- Zandanel F., Pfrommer C. & Prada F. (2014). On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions. MNRAS, 438, 124
- Ahnen M.L., Ansoldi S., Antonelli L.A. et al. (2016). Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster . A&A, 589, A33
- Brunetti G., Venturi T., Dallacasa D. et al. (2007). Cosmic Rays and Radio Halos in Galaxy Clusters: New Constraints from Radio Observations. ApJl, 670, L5
- Ackermann M., Ajello M., Albert A. et al. (2014). Search for Cosmic-Ray-induced Gamma-Ray Emission in Galaxy Clusters. ApJ, 787, 18
- Voit G.M. (2005). Tracing cosmic evolution with clusters of galaxies. Reviews of Modern Physics, 77, 207
- Forman W., Churazov E., David L. et al. (2003). A High Angular Resolution View of Hot Gas in Clusters, Groups, and Galaxies. arXiv:0301476
- Miniati F. & Beresnyak A. (2015). Self-similar energetics in large clusters of galaxies. Nature, 523, 59
- Brunetti G. & Jones T.W. (2014). Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. International Journal of Modern Physics D, 23, 1430007
- Feretti L., Giovannini G., Govoni F. et al. (2012). Clusters of galaxies: observational properties of the diffuse radio emission. A&A Rev., 20, 54
- Berezinsky V.S., Blasi P. & Ptuskin V.S. (1997). Clusters of Galaxies as Storage Room for Cosmic Rays. ApJ, 487, 529
- Blasi P. & Colafrancesco S. (1999). Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies. Astroparticle Physics, 12, 169
- Pfrommer C., Enßlin T.A. & Springel V. (2008). Simulating cosmic rays in clusters of galaxies -II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission. MNRAS, 385, 1211
- Blasi P. (2001). The non-thermal radiation-cluster merger connection. Astroparticle Physics, 15, 223
- Inoue S., Aharonian F.A. & Sugiyama N. (2005). Hard X-Ray and Gamma-Ray Emission Induced by Ultra-High-Energy Protons in Cluster Accretion Shocks. ApJl, 628, L9
- Vannoni G., Aharonian F.A., Gabici S. et al. (2011). Acceleration and radiation of ultra-high energy protons in galaxy clusters. A&A, 536, A56
- Armengaud E., Sigl G. & Miniati F. (2006). Secondary gamma rays from ultrahigh energy cosmic rays produced in magnetized environments. Physics Review D, 73, 8, 083008
- Kotera K., Allard D., Murase K. et al. (2009). Propagation of Ultrahigh Energy Nuclei in Clusters of Galaxies: Resulting Composition and Secondary Emissions. ApJ, 707, 370
- Kelner S.R. & Aharonian F.A. (2008). Energy spectra of gamma rays, electrons, and neutrinos produced at interactions of relativistic protons with low energy radiation. Physics Review D, 78, 3, 034013
- Croston J.H., Pratt G.W., B öhringer H. et al. (2008). Galaxy-cluster gas-density distributions of the representative XMM-Newton cluster structure survey (REXCESS). A&A, 487, 431
- Brunetti G., Blasi P., Reimer O. et al. (2012). Probing the origin of giant radio haloes through radio and γ-ray data: the case of the Coma cluster . MNRAS, 426, 956
- Pinzke A., Oh S.P. & Pfrommer C. (2016). Turbulence and Particle Acceleration in Giant Radio Haloes: the Origin of Seed Electrons. arXiv:1611.07533
- ZuHone J.A., Markevitch M., Brunetti G. et al. (2013). Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters. ApJ, 762, 78
- Jacob S. & Pfrommer C. (2016). Cosmic ray heating in cool core clusters II: Self-regulation cycle and non-thermal emission. arXiv:1609.06322
- Storm E.M., Jeltema T.E. & Profumo S. (2012). Gamma Rays from Star Formation in Clusters of Galaxies. ApJ, 755, 117
- Persic M. & Rephaeli Y. (2012). Cosmic rays in star-forming galaxies. Journal of Physics Conference Series, 355, 1, 012038
- Aleksić J., Antonelli L.A., Antoranz P. et al. (2010). MAGIC Gamma-ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter, and NGC 1275. ApJ, 710, 634
- -(2010). Detection of Very High Energy γ-ray Emission from the Perseus Cluster Head-Tail Galaxy IC 310 by the MAGIC Telescopes. ApJL, 723, L207
- Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes. A&A, 539, L2
- Aleksić J., Ansoldi S., Antonelli L.A. et al. (2014). Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays. A&A, 564, A5
- Wouters D. & Brun P. (2013). Constraints on Axion-like Particles from X-Ray Observations of the Hydra Galaxy Cluster . ApJ, 772, 44
- Reimer O., Pohl M., Sreekumar P. et al. (2003). EGRET Upper Limits on the High-Energy Gamma-Ray Emission of Galaxy Clusters. ApJ, 588, 155
- Ackermann M., Ajello M., Allafort A. et al. (2010). Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope. JCAP, 5, 025
- -(2010). GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies. ApJL, 717, L71
- Jeltema T.E. & Profumo S. (2011). Implications of Fermi Observations For Hadronic Models of Radio Halos in Clusters of Galaxies. ApJ, 728, 53
- Han J., Frenk C.S., Eke V.R. et al. (2012). Constraining extended gamma-ray emission from galaxy clusters. MNRAS, 427, 1651
- Ando S. & Nagai D. (2012). Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster . JCAP, 7, 017
- Huber B., Tchernin C., Eckert D. et al. (2013). Probing the cosmic-ray content of galaxy clusters by stacking Fermi-LAT count maps. A&A, 560, A64
- Zandanel F. & Ando S. (2014). Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster . MNRAS, 440, 663
- Prokhorov D.A. & Churazov E.M. (2014). Counting gamma rays in the directions of galaxy clusters. A&A, 567, A93
- Vazza F. & Br üggen M. (2014). Do radio relics challenge diffusive shock acceleration?. MNRAS, 437, 2291
- Griffin R.D., Dai X. & Kochanek C.S. (2014). New Limits on Gamma-Ray Emission from Galaxy Clusters. ApJL, 795, L21
- Selig M., Vacca V., Oppermann N. et al. (2015). The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D 3 PO algorithm. A&A, 581, A126
- Vazza F., Eckert D., Br üggen M. et al. (2015). Electron and proton acceleration efficiency by merger shocks in galaxy clusters. MNRAS, 451, 2198
- Ackermann M., Ajello M., Albert A. et al. (2016). Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data. ApJ, 819, 149
- -(2015). Search for Extended Gamma-Ray Emission from the Virgo Galaxy Cluster with FERMI-LAT . ApJ, 812, 159
- Perkins J.S., Badran H.M., Blaylock G. et al. (2006). TeV Gamma-Ray Observations of the Perseus and Abell 2029 Galaxy Clusters. ApJ, 644, 148
- Perkins J.S. (2008). VERITAS Observations of the Coma Cluster of Galaxies. In F.A. Aharonian, W. Hofmann & F. Rieger (editors), American Institute of Physics Conference Series, volume 1085 of American Institute of Physics Conference Series, pp. 569-572
- Aharonian F., Akhperjanian A.G., Anton G. et al. (2009). Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS. A&A, 495, 27
- Domainko W., Nedbal D., Hinton J.A. et al. (2009). New Results from H.E.S.S. Observations of Galaxy Clusters. International Journal of Modern Physics D, 18, 1627
- Galante N. & for the VERITAS Collaboration (2009). Observation of Radio Galaxies and Clusters of Galaxies with VERITAS. arXiv:0907.5000
- Kiuchi R., Mori M., Bicknell G.V. et al. (2009). CANGAROO-III Search for TeV Gamma Rays from Two Clusters of Galaxies. ApJ, 704, 240
- Acciari V.A., Aliu E., Arlen T. et al. (2009). VERITAS Upper Limit on the Very High Energy Emission from the Radio Galaxy NGC 1275. ApJL, 706, L275
- Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes. A&A, 541, A99
- Arlen T., Aune T., Beilicke M. et al. (2012). Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-Ray Observations of the Coma Cluster of Galaxies with VERITAS and Fermi. ApJ, 757, 123
- Abramowski A., Acero F., Aharonian F. et al. (2012). Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster . A&A, 545, A103
- Ando S. & Nagai D. (2008). Gamma-ray probe of cosmic ray pressure in galaxy clusters and cosmological implications. MNRAS, 385, 2243
- Churazov E., Forman W., Jones C. et al. (2003). XMM-Newton Observations of the Perseus Cluster. I. The Temperature and Surface Brightness Structure. ApJ, 590, 225
- Pedlar A., Ghataure H.S., Davies R.D. et al. (1990). The Radio Structure of NGC1275. MNRAS, 246, 477
- Gitti M., Brunetti G. & Setti G. (2002). Modeling the interaction between ICM and relativistic plasma in cooling flows: The case of the Perseus cluster . A&A, 386, 456
- Charles E., S ánchez-Conde M., Anderson B. et al. (2016). Sensitivity projections for dark matter searches with the Fermi large area telescope. Phys. Rep., 636, 1
- Reiprich T.H. & B öhringer H. (2002). The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters. ApJ, 567, 716
- Vazza F., Br üggen M., Wittor D. et al. (2016). Constraining the efficiency of cosmic ray acceleration by cluster shocks. MNRAS, 459, 70
- Kushnir D. & Waxman E. (2009). Nonthermal emission from clusters of galaxies. JCAP, 8, 002
- Bonafede A., Feretti L., Murgia M. et al. (2010). The Coma cluster magnetic field from Faraday rotation measures. A&A, 513, A30+
- Bonafede A., Vazza F., Br üggen M. et al. (2013). Measurements and simulation of Faraday rotation across the Coma radio relic. MNRAS, 433, 3208
- R öttgering H., Afonso J., Barthel P. et al. (2011). LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters. Journal of Astrophysics and Astronomy, 32, 557
- Govoni F., Murgia M., Xu H. et al. (2013). Polarization of cluster radio halos with upcoming radio interferometers. A&A, 554, A102
- Bonafede A., Vazza F., Br üggen M. et al. (2015). Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 95
- Enßlin T., Pfrommer C., Miniati F. et al. (2011). Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating. A&A, 527, A99+
- Wiener J., Oh S.P. & Guo F. (2013). Cosmic ray streaming in clusters of galaxies. MNRAS, 434, 2209
- Govoni F. & Feretti L. (2004). Magnetic Fields in Clusters of Galaxies. International Journal of Modern Physics D, 13, 1549
- Clarke T.E. (2004). Faraday Rotation Observations of Magnetic Fields in Galaxy Clusters. Journal of Korean Astronomical Society, 37, 337
- Enßlin T.A. & Vogt C. (2006). Magnetic turbulence in cool cores of galaxy clusters. A&A, 453, 447
- Kuchar P. & Enßlin T.A. (2011). Magnetic power spectra from Faraday rotation maps. REALMAF and its use on Hydra A. A&A, 529, A13+
- Domínguez A., Primack J.R., Rosario D.J. et al. (2011). Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. MNRAS, 410, 2556
- Sijbring L.G. (1993). A Radio Continuum and HI Line Study of the Perseus Cluster . Ph.D. thesis, Groningen University
- Juliusson E., Meyer P. & M üller D. (1972). Composition of Cosmic-Ray Nuclei at High Energies. Physical Review Letters, 29, 7, 445
- Garcia-Munoz M., Mason G.M. & Simpson J.A. (1975). The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron. The Astrophysical Journal, 201, L145
- 2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54
- Kieda D., Swordy S. & Wakely S. (2001). A high resolution method for measuring cosmic ray composition beyond 10 TeV . Astroparticle Physics, 15, 3, 287
- Aharonian F., Akhperjanian A., Bazer-Bachi A. et al. (2007). First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Physical Review D, 75, 4, 042004
- Wissel S.A. (2010). Observations of direct Cerenkov light in ground-based telescopes and the flux of iron nuclei at TeV energies. ProQuest Dissertations And Theses; Thesis (Ph.D.)-The University of Chicago
- Aharonian F.A., Atoyan A.M. & Voelk H.J. (1995). High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron. A&A, 294, L41
- Kobayashi T., Komori Y., Yoshida K. et al. (2004). The Most Likely Sources of High-Energy Cosmic-Ray Electrons in Supernova Remnants. ApJ, 601, 340
- Abdo A.A., Ackermann M., Ajello M. et al. (2009). Measurement of the Cosmic Ray e + +e -Spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope. Physical Review Letters, 102, 18, 181101
- Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. (2011). Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV . Physical Review Letters, 106, 20, 201101
- Aguilar M., Aisa D., Alvino A. et al. (2014). Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 113, 12, 121102
- Abdollahi S., Ackermann M., Ajello M. et al. (2017). Cosmic-ray electron-positron spectrum from 7 gev to 2 tev with the fermi large area telescope. Phys. Rev. D, 95, 082007
- Malyshev D., Cholis I. & Gelfand J. (2009). Pulsars versus dark matter interpretation of ATIC/PAMELA. Phys. Rev. D, 80, 6, 063005
- Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. (2009). An anomalous positron abundance in cosmic rays with energies 1.5-100GeV . Nature, 458, 607
- Aguilar M., Alberti G., Alpat B. et al. (2013). First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV . Physical Review Letters, 110, 14, 141102
- Borla Tridon D. (2011). Measurement of the cosmic electron spectrum with the MAGIC telescopes. International Cosmic Ray Conference, 6, 47
- Staszak D. & for the VERITAS Collaboration (2015). A Cosmic-ray Electron Spectrum with VERITAS. proc. 34th ICRC The Hague, Netherlands
- Parsons R.D. (2011). Towards a Measurement of the Cosmic Ray Electron Spectrum at the Highest Energies, using the Next-Generation Cherenkov Array CTA. Ph.D. thesis, University of Leeds
- Gaug M., Berge D., Daniel M. et al. (2014). Calibration strategies for the Cherenkov Telescope Array. In Observatory Operations: Strategies, Processes, and Systems V , volume 9149 of Proc. SPIE, p. 914919
- Parsons R.D., Hinton J.A. & Schoorlemmer H. (2016). Calibration of the Cherenkov telescope array using cosmic ray electrons. Astroparticle Physics, 84, 23
- d'Enterria D., Engel R., Pierog T. et al. (2011). Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic- ray physics. Astroparticle Physics, 35, 98
- Marrocchesi P.S. (2015). CALET: a high energy astroparticle physics experiment on the ISS. arXiv:1512.08059
- Brown R.H. (1974). The intensity interferometer: Its application to astronomy, (Halsted Press)
- Tuthill P.G. (2014). The narrabri stellar intensity interferometer: a 50th birthday tribute. volume 9146, pp. 91460C-91460C-7
- Le Bohec S. & Holder J. (2006). Optical Intensity Interferometry with Atmospheric Cerenkov Telescope Arrays. ApJ, 649, 399
- Dravins D. & LeBohec S. (2008). Toward a diffraction-limited square-kilometer optical telescope: digital revival of intensity interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6986 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
- Nu ñez P.D., Holmes R., Kieda D. et al. (2012). High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope arrays. MNRAS, 419, 172
- Dravins D. & Lagadec T. (2014). Stellar intensity interferometry over kilometer baselines: laboratory simulation of observations with the Cherenkov Telescope Array . In Optical and Infrared Interferometry IV , volume 9146 of Proc. SPIE, p. 91460Z
- Lacki B.C. (2014). On the use of Cherenkov Telescopes for outer Solar system body occultations. MNRAS, 445, 1858
- Hanna D.S., Ball J., Covault C.E. et al. (2009). OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars. Astrobiology, 9, 345
- Abeysekara A.U., Archambault S., Archer A. et al. (2016). A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852. ApJ, 818, L33
- Heck D., Knapp J., Capdevielle J. et al.. Corsika a monte-carlo code to simulate extensive air showers. Report FZKA 6019 (1998), Forschungszentrum Karlsruhe; https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.pdf
- Bernl öhr K. (2008). Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim telarray. Astroparticle Physics, 30, 149
- Hassan T., Arrabito L., Bernl ör K. et al. (2015). Second large-scale Monte Carlo study for the Cherenkov Telescope Array. arXiv:1508.06075