Academia.eduAcademia.edu

Outline

Science with the Cherenkov Telescope Array

Science with the Cherenkov Telescope Array

https://doi.org/10.1142/10986

Abstract
sparkles

AI

The Cherenkov Telescope Array (CTA) is poised to become the primary observatory for very high energy gamma-ray astronomy, focusing on a diverse range of scientific inquiries including dark matter detection and cosmic particle acceleration. With its advanced technology, CTA offers enhanced performance over existing instruments, featuring improved sensitivity, resolution, and a wide field of view for rapid sky surveys. The collaborative efforts of the CTA Consortium aim to conduct key scientific projects over its operational timeframe, providing valuable data for the global scientific community and expanding our understanding of high-energy astrophysical phenomena.

References (659)

  1. Abeysekara A.U., Albert A., Alfaro R. et al. (2017). Observation of the Crab Nebula with the HAWC Gamma-Ray Observatory. ApJ, 843, 39
  2. Holler M., Berge D., van Eldik C. et al. (2015). Observations of the Crab Nebula with H.E.S.S. Phase II. arXiv:1509.02902
  3. Aleksić J., Ansoldi S., Antonelli L.A. et al. (2016). The major upgrade of the MAGIC telescopes, Part II: A performance study using observations of the Crab Nebula. Astroparticle Physics, 72, 76
  4. Bartos I., Veres P., Nieto D. et al. (2014). Cherenkov Telescope Array is well suited to follow up gravitational-wave transients. MNRAS, 443, 738
  5. Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Observation of Gravitational Waves from a Binary Black Hole Merger . Physical Review Letters, 116, 6, 061102
  6. Dubus G., Contreras J.L., Funk S. et al. (2013). Surveys with the Cherenkov Telescope Array . Astroparticle Physics, 43, 317
  7. Abdo A.A., Allen B., Berley D. et al. (2007). TeV Gamma-Ray Sources from a Survey of the Galactic Plane with Milagro. ApJ, 664, L91
  8. Amenomori M., Ayabe S., Chen D. et al. (2005). A Northern Sky Survey for Steady Tera-Electron Volt Gamma-Ray Point Sources Using the Tibet Air Shower Array. ApJ, 633, 1005
  9. Arsioli B., Fraga B., Giommi P. et al. (2015). 1WHSP: An IR-based sample of ˜1000 VHE γ-ray blazar candidates. A&A, 579, A34
  10. Padovani P. & Giommi P. (2015). A simplified view of blazars: the very high energy γ-ray vision. MNRAS, 446, L41
  11. Inoue S., Granot J., O'Brien P.T. et al. (2013). Gamma-ray burst science in the era of the Cherenkov Telescope Array . Astroparticle Physics, 43, 252
  12. de O ña-Wilhelmi E., Rudak B., Barrio J.A. et al. (2013). Prospects for observations of pulsars and pulsar wind nebulae with CTA. Astroparticle Physics, 43, 287
  13. Uchiyama Y., Aharonian F.A., Tanaka T. et al. (2007). Extremely fast acceleration of cosmic rays in a supernova remnant. Nature, 449, 576
  14. Bulgarelli A., Fioretti V., Contreras J.L. et al. (2013). The Real-Time Analysis of the Cherenkov Telescope Array Observatory . arXiv:1307.6489
  15. Funk S., Hinton J.A. & CTA Consortium (2013). Comparison of Fermi-LAT and CTA in the region between 10-100 GeV . Astroparticle Physics, 43, 348
  16. Begelman M.C., Fabian A.C. & Rees M.J. (2008). Implications of very rapid TeV variability in blazars. MNRAS, 384, L19
  17. Paredes J.M., Bednarek W., Bordas P. et al. (2013). Binaries with the eyes of CTA. Astroparticle Physics, 43, 301
  18. Picozza P. & Boezio M. (2013). Multi messenger astronomy and CTA: TeV cosmic rays and electrons. Astroparticle Physics, 43, 163
  19. Dravins D., LeBohec S., Jensen H. et al. (2013). Optical intensity interferometry with the Cherenkov Telescope Array . Astroparticle Physics, 43, 331
  20. Gabici S. & Aharonian F.A. (2014). Hadronic gamma-rays from RX J1713.7-3946?. MNRAS, 445, L70
  21. Acero F., Bamba A., Casanova S. et al. (2013). Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA. Astroparticle Physics, 43, 276
  22. The CTA Consortium: Acero, F, Aloisio R., Amans J. et al. (2017). Prospects for cherenkov telescope array observations of the young supernova remnant rx j1713.73946. The Astrophysical Journal, 840, 2, 74
  23. V ölk H.J., Aharonian F.A. & Breitschwerdt D. (1996). The Nonthermal Energy Content and Gamma-Ray Emission of Starburst Galaxies and Clusters of Galaxies. Space Sci. Rev., 75, 279
  24. Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Astrophysical Implications of the Binary Black Hole Merger GW150914. ApJ, 818, L22
  25. -(2016). GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Physical Review Letters, 116, 24, 241103
  26. -(2016). Binary Black Hole Mergers in the First Advanced LIGO Observing Run. Physical Review X, 6, 4, 041015
  27. Sol H., Zech A., Boisson C. et al. (2013). Active Galactic Nuclei under the scrutiny of CTA. Astroparticle Physics, 43, 215
  28. Mazin D., Raue M., Behera B. et al. (2013). Potential of EBL and cosmology studies with the Cherenkov Telescope Array. Astroparticle Physics, 43, 241
  29. Broderick A.E., Chang P. & Pfrommer C. (2012). The Cosmological Impact of Luminous TeV Blazars. I. Implications of Plasma Instabilities for the Intergalactic Magnetic Field and Extragalactic Gamma-Ray Background. ApJ, 752, 22
  30. Hinton J., Sarkar S., Torres D. et al. (2013). A New Era in Gamma-Ray Astronomy with the Cherenkov Telescope Array. Astroparticle Physics, 43, 1
  31. Bourke T.L., Braun R., Fender R. et al. (editors) (2015). Proceedings, Advancing Astrophysics with the Square Kilometre Array (AASKA14), volume AASKA14. SISSA, SISSA
  32. Ray P.S., Abdo A.A., Parent D. et al. (2012). Radio Searches of Fermi LAT Sources and Blind Search Pulsars: The Fermi Pulsar Search Consortium. proc. Fermi Symposium
  33. Lorimer D.R., Bailes M., McLaughlin M.A. et al. (2007). A Bright Millisecond Radio Burst of Extragalactic Origin. Science, 318, 777
  34. Thornton D., Stappers B., Bailes M. et al. (2013). A Population of Fast Radio Bursts at Cosmological Distances. Science, 341, 53
  35. Pavlidou V., Angelakis E., Myserlis I. et al. (2014). The RoboPol optical polarization survey of gamma-ray-loud blazars. MNRAS, 442, 1693
  36. Blinov D., Pavlidou V., Papadakis I. et al. (2015). RoboPol: first season rotations of optical polarization plane in blazars. MNRAS, 453, 1669
  37. Reinthal R., Lindfors E.J., Mazin D. et al. (2012). Connection Between Optical and VHE Gamma-ray Emission in Blazar Jets. Journal of Physics Conference Series, 355, 1, 012013
  38. Lindfors E. & MAGIC Collaboration (2012). Recent results from MAGIC observations of AGN. Journal of Physics Conference Series, 355, 1, 012003
  39. Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Discovery of VHE γ-rays from the blazar 1ES 1215+303 with the MAGIC telescopes and simultaneous multi-wavelength observations. A&A, 544, A142
  40. Tepe A. & HAWC Collaboration (2012). HAWC -The High Altitude Water Cherenkov Detector . Journal of Physics Conference Series, 375, 5, 052026
  41. Di Sciascio G. & on behalf of the LHAASO Collaboration (2016). The LHAASO experiment: from Gamma-Ray Astronomy to Cosmic Rays. arXiv:1602.07600
  42. Aartsen M. et al. (2013). Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector . Science, 342, 1242856
  43. Razzaque S. (2013). Galactic Center origin of a subset of IceCube neutrino events. Phys. Rev. D, 88, 8, 081302
  44. Katz U.F. (2006). KM3NeT: Towards a km 3 Mediterranean neutrino telescope. Nuclear Instruments and Methods in Physics Research A, 567, 457
  45. Aasi J., Abadie J., Abbott B.P. et al. (2013). Prospects for Localization of Gravitational Wave Transients by the Advanced LIGO and Advanced Virgo Observatories. arXiv:1304.0670
  46. Abadie J., Abbott B.P., Abbott R. et al. (2010). Topical Review: Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity, 27, 17, 173001
  47. Punturo M., Abernathy M., Acernese F. et al. (2010). The Einstein Telescope: a third-generation gravitational wave observatory . Classical and Quantum Gravity, 27, 19, 194002
  48. Abdallah H. et al. (2016). Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett., 117, 11, 111301
  49. Ackermann M., Albert A., Anderson B. et al. (2015). Searching for Dark Matter Annihilation from Milky Way Dwarf Spheroidal Galaxies with Six Years of Fermi Large Area Telescope Data. Physical Review Letters, 115, 23, 231301
  50. Roszkowski L., Sessolo E.M. & Williams A.J. (2015). Prospects for dark matter searches in the pMSSM. Journal of High Energy Physics, 2, 14
  51. Roszkowski L., Sessolo E.M. & Williams A.J. (2014). What next for the CMSSM and the NUHM: Improved prospects for superpartner and dark matter detection. JHEP, 1408, 067
  52. Abramowski A. et al. (2011). Search for a Dark Matter annihilation signal from the Galactic Center halo with H.E.S.S. Phys.Rev.Lett., 106, 161301
  53. Zwicky F. (1933). Die Rotverschiebung von extragalaktischen Nebeln. Helv.Phys.Acta, 6, 110
  54. Clowe D., Gonzalez A. & Markevitch M. (2004). Weak lensing mass reconstruction of the interacting cluster 1E0657-558: Direct evidence for the existence of dark matter . ApJ, 604, 596
  55. Bradac M., Allen S.W., Treu T. et al. (2008). Revealing the properties of dark matter in the merging cluster MACSJ0025.4-1222. ApJ, 687, 959
  56. Clowe D., Bradac M., Gonzalez A.H. et al. (2006). A direct empirical proof of the existence of dark matter . Astrophys. J., 648, L109
  57. Alcock C. et al. (2000). The MACHO project: Microlensing results from 5.7 years of LMC observations. ApJ, 542, 281
  58. Tisserand P. et al. (2007). Limits on the Macho Content of the Galactic Halo from the EROS-2 Survey of the Magellanic Clouds. As- tron.Astrophys., 469, 387
  59. Ade P. et al. (2014). Planck intermediate results. XVI. Profile likelihoods for cosmological parameters. Astron.Astrophys., 566, A54
  60. Planck Collaboration, Ade P.A.R., Aghanim N. et al. (2016). Planck 2015 results. XIII. Cosmological parameters. A&A, 594, A13
  61. Springel V., Wang J., Vogelsberger M. et al. (2008). The Aquarius Project: the subhalos of galactic halos. MNRAS, 391, 1685
  62. Diemand J., Kuhlen M., Madau P. et al. (2008). Clumps and streams in the local dark matter distribution. Nature, 454, 735
  63. Navarro J.F., Frenk C.S. & White S.D. (1996). The Structure of cold dark matter halos. ApJ, 462, 563
  64. Graham A.W., Merritt D., Moore B. et al. (2006). Empirical Models for Dark Matter Halos. III. The Kormendy relation and the log(rhoe) - log(Re) relation. Astron.J., 132, 2711
  65. Navarro J.F., Ludlow A., Springel V. et al. (2010). The Diversity and Similarity of Cold Dark Matter Halos. Mon.Not.Roy.Astron.Soc., 402, 21
  66. Walker M.G., Mateo M., Olszewski E.W. et al. (2009). A Universal Mass Profile for Dwarf Spheroidal Galaxies. ApJ, 704, 1274
  67. Walker M.G. & Penarrubia J. (2011). A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies. ApJ, 742, 20
  68. Zeldovich Y., Klypin A., Khlopov M.Y. et al. (1980). Astrophysical constraints on the mass of heavy stable neutral leptons. Sov.J.Nucl.Phys., 31, 664
  69. Blumenthal G.R., Faber S., Flores R. et al. (1986). Contraction of Dark Matter Galactic Halos Due to Baryonic Infall. ApJ, 301, 27
  70. Merritt D. (2004). Evolution of the dark matter distribution at the galactic center . Phys.Rev.Lett., 92, 201304
  71. Merritt D., Harfst S. & Bertone G. (2007). Collisionally Regenerated Dark Matter Structures in Galactic Nuclei. Phys.Rev., D75, 043517
  72. Gondolo P. & Silk J. (1999). Dark matter annihilation at the galactic center . Phys.Rev.Lett., 83, 1719
  73. Merritt D., Milosavljevic M., Verde L. et al. (2002). Dark matter spikes and annihilation radiation from the galactic center . Phys.Rev.Lett., 88, 191301
  74. Gnedin N.Y., Tassis K. & Kravtsov A.V. (2009). Modeling Molecular Hydrogen and Star Formation in Cosmological Simulations. ApJ, 697, 55
  75. Wise J.H. & Abel T. (2011). Enzo+Moray: Radiation Hydrodynamics Adaptive Mesh Refinement Simulations with Adaptive Ray Tracing. MNRAS, 414, 3458
  76. Teyssier R. (2002). Cosmological hydrodynamics with adaptive mesh refinement: a new high resolution code called ramses. As- tron.Astrophys., 385, 337
  77. Keres D., Vogelsberger M., Sijacki D. et al. (2012). Moving mesh cosmology: characteristics of galaxies and haloes. MNRAS, 425, 2027 References
  78. Ackermann M. et al. (2014). Dark matter constraints from observations of 25 Milky Way satellite galaxies with the Fermi Large Area Telescope. Phys.Rev., D89, 4, 042001
  79. Susskind L. (1984). The Gauge Hierarchy Problem, Technicolor, Supersymmetry, and all that. (Talk). Phys.Rept., 104, 181
  80. Bertone G., Hooper D. & Silk J. (2005). Particle dark matter: Evidence, candidates and constraints. Phys.Rept., 405, 279
  81. Cushman P., Galbiati C., McKinsey D. et al. (2013). Snowmass CF1 Summary: WIMP Dark Matter Direct Detection. arXiv:1310.8327
  82. Tulin S., Yu H.B. & Zurek K.M. (2013). Beyond collisionless dark matter: Particle physics dynamics for dark matter halo structure. Phys. Rev. D, 87, 11, 115007
  83. Cahill-Rowley M., Cotta R., Drlica-Wagner A. et al. (2013). Complementarity and Searches for Dark Matter in the pMSSM. arXiv:1305.6921
  84. Bringmann T., Calore F., Vertongen G. et al. (2011). On the Relevance of Sharp Gamma-Ray Features for Indirect Dark Matter Searches. Phys.Rev., D84, 103525
  85. Arina C., Hambye T., Ibarra A. et al. (2010). Intense Gamma-Ray Lines from Hidden Vector Dark Matter Decay. JCAP, 1003, 024
  86. Bringmann T., Bergstrom L. & Edsjo J. (2008). New Gamma-Ray Contributions to Supersymmetric Dark Matter Annihilation. JHEP, 0801, 049
  87. Birkedal A., Matchev K.T., Perelstein M. et al. (2005). Robust gamma ray signature of WIMP dark matter . arXiv:0507194
  88. Bergstrom L., Bringmann T., Eriksson M. et al. (2005). Gamma rays from Kaluza-Klein dark matter . Phys.Rev.Lett., 94, 131301
  89. Bergstrom L., Bringmann T., Eriksson M. et al. (2005). Gamma rays from heavy neutralino dark matter . Phys.Rev.Lett., 95, 241301
  90. Bergstrom L. (1989). Radiative Processes in Dark Matter Photino Annihilation. Phys.Lett., B225, 372
  91. Toma T. (2013). Internal Bremsstrahlung Signature of Real Scalar Dark Matter and Consistency with Thermal Relic Density . Phys.Rev.Lett., 111, 091301
  92. Mayer L. (2010). Environmental mechanisms shaping the nature of dwarf spheroidal galaxies: the view of computer simulations. Adv.Astron., 2010, 278434
  93. Aharonian F. et al. (2006). H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation. Phys.Rev.Lett., 97, 221102
  94. Iocco F., Pato M., Bertone G. et al. (2011). Dark Matter distribution in the Milky Way: microlensing and dynamical constraints. JCAP, 1111, 029
  95. Schaye J., Crain R.A., Bower R.G. et al. (2015). The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. MNRAS, 446, 521
  96. Wyrzykowski L., Rynkiewicz A.E., Skowron J. et al. (2015). The Largest Sample of Microlensing Events and the Structure of the Galactic Bulge from the OGLE-III Survey. ApJS, 216, 12
  97. Freeman K., Ness M., de Boer E.W. et al. (2013). ARGOS II: The Galactic Bulge Survey. MNRAS, 428, 3660
  98. Howard C.D., Rich R.M., Reitzel D.B. et al. (2008). The Bulge Radial Velocity Assay (BRAVA): I. Sample Selection and a Rotation Curve. ApJ, 688, 1060
  99. GAIA: http://sci.esa.int/gaia/
  100. Zoccali M., Gonzalez O.A., Vasquez S. et al. (2014). The GIRAFFE Inner Bulge Survey (GIBS). I. Survey description and a kinematical map of the Milky Way bulge. A&A, 562, A66
  101. Lefranc V., Moulin E., Panci P. et al. (2015). Prospects for Annihilating Dark Matter in the inner Galactic halo by the Cherenkov Telescope Array . Phys. Rev. D, 91, 12, 122003
  102. Cabrera-Catalan M.E., Ando S., Weniger C. et al. (2015). Indirect and direct detection prospect for TeV dark matter in the nine parameter MSSM. Phys. Rev. D, 92, 3, 035018
  103. Pierre M., Siegal-Gaskins J.M. & Scott P. (2014). Sensitivity of CTA to dark matter signals from the Galactic Center . J. Cosmology Astropart. Phys., 6, 024
  104. Silverwood H., Weniger C., Scott P. et al. (2015). A realistic assessment of the CTA sensitivity to dark matter annihilation. JCAP, 1503, 03, 055
  105. Ackermann M. et al. (2012). Fermi LAT Search for Dark Matter in Gamma-ray Lines and the Inclusive Photon Spectrum. Phys.Rev., D86, 022002
  106. Abramowski A. et al. (2013). Search for photon line-like signatures from Dark Matter annihilations with H.E.S.S. Phys.Rev.Lett., 110, 041301
  107. Bringmann T., Huang X., Ibarra A. et al. (2012). Fermi LAT Search for Internal Bremsstrahlung Signatures from Dark Matter Annihilation. JCAP, 1207, 054
  108. Weniger C. (2012). A Tentative Gamma-Ray Line from Dark Matter Annihilation at the Fermi Large Area Telescope. JCAP, 1208, 007
  109. Martinez G.D. (2015). A Robust Determination of Milky Way Satellite Properties using Hierarchical Mass Modeling. 451, 2524
  110. The DES Collaboration, Bechtol K. et al. (2015). Eight New Milky Way Companions Discovered in First-Year Dark Energy Survey Data. ApJ, 807, 50
  111. Koposov S.E., Belokurov V., Torrealba G. et al. (2015). Beasts of the Southern Wild: Discovery of nine Ultra Faint satellites in the vicinity of the Magellanic Clouds. ApJ, 805, 130
  112. Bonnivard V., Combet C., Maurin D. et al. (2015). Dark matter annihilation and decay profiles for the Reticulum II dwarf spheroidal galaxy . Astrophys. J., 808, 2, L36
  113. Bringmann T. (2009). Particle Models and the Small-Scale Structure of Dark Matter . New J.Phys., 11, 105027
  114. Zackrisson E. & Riehm T. (2010). Gravitational lensing as a probe of cold dark matter subhalos. Adv.Astron., 2010, 478910
  115. Chen J. & Koushiappas S.M. (2010). Gravitational Nanolensing from Subsolar Mass Dark Matter Halos. ApJ, 724, 400
  116. Garsden H., Bate N. & Lewis G. (2012). Probing planetary mass dark matter in galaxies: gravitational nanolensing of multiply imaged quasars. MNRAS, 420, 3574
  117. Geringer-Sameth A. & Koushiappas S.M. (2012). Detecting unresolved moving sources in a diffuse background. MNRAS, 425, 862
  118. Carlberg R.G. & Grillmair C.J. (2013). Gaps in the GD-1 Star Stream. ApJ, 768, 171
  119. Grillmair C.J., Cutri R., Masci F.J. et al. (2013). Detection of a Nearby Halo Debris Stream in the WISE and 2MASS Surveys. ApJ, 769, L23
  120. Grillmair C.J. (2014). Two New Halo Debris Streams in the Sloan Digital Sky Survey. ApJ, 790, L10
  121. Hargis J., Willman B., Sand D. et al. (2014). Milky Way Stellar Streams: A Window to Purely Dark Subhalos. NOAO Proposal
  122. Sesar B., Banholzer S.R., Cohen J.G. et al. (2014). Stacking the Invisibles: A Guided Search for Low-luminosity Milky Way Satellites. ApJ, 793, 135
  123. Erkal D. & Belokurov V. (2015). Forensics of Subhalo-Stream Encounters: The Three Phases of Gap Growth. MNRAS, 450, 1136
  124. Pieri L., Bertone G. & Branchini E. (2008). Dark Matter Annihilation in Substructures Revised. MNRAS, 384, 1627
  125. Buckley M.R. & Hooper D. (2010). Dark Matter Subhalos In the Fermi First Source Catalog. Phys.Rev., D82, 063501
  126. Zechlin H., Fernandes M., Elsaesser D. et al. (2012). Dark matter subhaloes as gamma-ray sources and candidates in the first Fermi-LAT catalogue. Astron.Astrophys., 538, A93
  127. Smith G.P. (1963). A peculiar feature at l II = 40 • .5, b II = -15 • .0. Bull. Astron. Inst. Netherlands, 17, 203
  128. Saul D.R., Peek J., Grcevich J. et al. (2012). The GALFA-HI Compact Cloud Catalog. ApJ, 758, 44
  129. Hill A.S., Haffner L.M. & Reynolds R.J. (2009). Ionized Gas in the Smith Cloud. ApJ, 703, 1832
  130. Bonnivard V., Combet C., Maurin D. et al. (2015). Spherical Jeans analysis for dark matter indirect detection in dwarf spheroidal galaxies - impact of physical parameters and triaxiality. MNRAS, 446, 3002
  131. Geringer-Sameth A., Koushiappas S.M. & Walker M. (2015). Dwarf galaxy annihilation and decay emission profiles for dark matter experi- ments. ApJ, 801, 74
  132. Koch A., Kleyna J., Wilkinson M. et al. (2007). Stellar kinematics in the remote Leo II dwarf spheroidal galaxy -Another brick in the wall. Astron.J., 134, 566
  133. Walker M.G., Mateo M. & Olszewski E. (2009). Stellar Velocities in the Carina, Fornax, Sculptor and Sextans dSph Galaxies: Data from the Magellan/MMFS Survey. Astron.J., 137, 3100
  134. Walker M. (2013). Dark Matter in the Galactic Dwarf Spheroidal Satellites, p. 1039
  135. Charbonnier A., Combet C., Daniel M. et al. (2011). Dark matter profiles and annihilation in dwarf spheroidal galaxies: prospectives for present and future gamma-ray observatories -I. The classical dSphs. Mon.Not.Roy.Astron.Soc., 418, 1526
  136. Strigari L.E., Koushiappas S.M., Bullock J.S. et al. (2008). The Most Dark Matter Dominated Galaxies: Predicted Gamma-ray Signals from the Faintest Milky Way Dwarfs. ApJ, 678, 614
  137. Strigari L.E. (2013). Galactic Searches for Dark Matter . Phys.Rept., 531, 1
  138. Koposov S., Belokurov V., Evans N. et al. (2008). The Luminosity Function of the Milky Way Satellites. ApJ, 686, 279
  139. Tollerud E.J., Bullock J.S., Strigari L.E. et al. (2008). Hundreds of Milky Way Satellites? Luminosity Bias in the Satellite Luminosity Function. ApJ, 688, 277
  140. Bullock J.S. (2010). Notes on the Missing Satellites Problem. arXiv:1009.4505
  141. Hargis J.R., Willman B. & Peter A.H.G. (2014). Too Many, Too Few, or Just Right? The Predicted Number and Distribution of Milky Way Dwarf Galaxies. ApJ, 795, L13
  142. Tasitsiomi A., Siegal-Gaskins J.M. & Olinto A.V. (2004). Gamma-ray and synchrotron emission from neutralino annihilation in the Large Magellanic Cloud. Astropart.Phys., 21, 637
  143. Buckley M.R., Charles E., Gaskins J.M. et al. (2015). Search for gamma-ray emission from dark matter annihilation in the large magellanic cloud with the fermi large area telescope. Phys. Rev. D, 91, 10, 102001
  144. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Observations of the Large Magellanic Cloud with Fermi. A&A, 512, A7+
  145. H.E.S.S. Collaboration, Abramowski A., Aharonian F. et al. (2015). The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud. Science, 347, 406
  146. Kim S., Staveley-Smith L., Dopita M.A. et al. (1998). An H I Aperture Synthesis Mosaic of the Large Magellanic Cloud. ApJ, 503, 674
  147. van der Marel R.P. & Kallivayalil N. (2014). Third-Epoch Magellanic Cloud Proper Motions II: The Large Magellanic Cloud Rotation Field in Three Dimensions. ApJ, 781, 2, 121
  148. van der Marel R.P., Alves D.R., Hardy E. et al. (2002). New understanding of large magellanic cloud structure, dynamics and orbit from carbon star kinematics. Astron.J., 124, 2639
  149. Combet C., Maurin D., Nezri E. et al. (2012). Decaying dark matter: Stacking analysis of galaxy clusters to improve on current limits. Phys. Rev. D, 85, 6, 063517
  150. Sanchez-Conde M.A. & Prada F. (2014). The flattening of the concentration-mass relation towards low halo masses and its implications for the annihilation signal boost. MNRAS, 442, 2271
  151. Pinzke A., Pfrommer C. & Bergstrom L. (2009). Gamma-rays from dark matter annihilations strongly constrain the substructure in halos. Phys.Rev.Lett., 103, 181302
  152. Pinzke A., Pfrommer C. & Bergstr öm L. (2011). Prospects of detecting gamma-ray emission from galaxy clusters: Cosmic rays and dark matter annihilations. Phys. Rev. D, 84, 12, 123509
  153. Cirelli M., Moulin E., Panci P. et al. (2012). Gamma ray constraints on Decaying Dark Matter . Phys. Rev., D86, 083506
  154. S ánchez-Conde M.A., Cannoni M., Zandanel F. et al. (2011). Dark matter searches with Cherenkov telescopes: nearby dwarf galaxies or local galaxy clusters?. J. Cosmology Astropart. Phys., 12, 011
  155. Aleksić J., Rico J. & Martinez M. (2012). Optimized analysis method for indirect dark matter searches with imaging air Cherenkov telescopes. J. Cosmology Astropart. Phys., 10, 032
  156. Ackermann M. et al. (2012). Constraints on the Galactic Halo Dark Matter from Fermi-LAT Diffuse Measurements. ApJ, 761, 91
  157. Cembranos J.A.R., de La Cruz-Dombriz A., Dobado A. et al. (2011). Photon spectra from WIMP annihilation. Phys. Rev. D, 83, 8, 083507
  158. Ponti G., Morris M.R., Terrier R. et al. (2015). The XMM-Newton view of the central degrees of the Milky Way. MNRAS, 453, 172
  159. LaRosa T.N., Kassim N.E., Lazio T.J.W. et al. (2000). A Wide-Field 90 Centimeter VLA Image of the Galactic Center Region. AJ, 119, 207
  160. Molinari S., Bally J., Noriega-Crespo A. et al. (2011). A 100 pc Elliptical and Twisted Ring of Cold and Dense Molecular Clouds Revealed by Herschel Around the Galactic Center . ApJ, 735, L33
  161. van Eldik C. (2015). Gamma rays from the Galactic Centre region: A review. Astroparticle Physics, 71, 45
  162. Aharonian F., Akhperjanian A.G., Anton G. et al. (2009). Spectrum and variability of the Galactic center VHE γ-ray source HESS J1745-290. A&A, 503, 817
  163. Archer A., Barnacka A., Beilicke M. et al. (2014). Very-high Energy Observations of the Galactic Center Region by VERITAS in 2010-2012.
  164. ApJ, 790, 149
  165. Aharonian F., Akhperjanian A.G., Bazer-Bachi A.R. et al. (2006). Discovery of very-high-energy γ-rays from the Galactic Centre ridge. Nature, 439, 695
  166. Archer A., Benbow W., Bird R. et al. (2016). TeV Gamma-Ray Observations of the Galactic Center Ridge by VERITAS. ApJ, 821, 129
  167. HESS Collaboration, Abramowski A., Aharonian F. et al. (2016). Acceleration of petaelectronvolt protons in the Galactic Centre. Nature, 531, 476
  168. Aharonian F., Akhperjanian A.G., Aye K.M. et al. (2005). Very high energy gamma rays from the composite SNR G 0.9+0.1. A&A, 432, L25
  169. Jones P.A., Burton M.G., Cunningham M.R. et al. (2012). Spectral imaging of the Central Molecular Zone in multiple 3-mm molecular lines. MNRAS, 419, 2961
  170. Johnson S.P., Dong H. & Wang Q.D. (2009). A large-scale survey of X-ray filaments in the Galactic Centre. MNRAS, 399, 1429
  171. Kosack K. et al. (2004). TeV gamma-ray observations of the galactic center . ApJ, 608, L97
  172. Tsuchiya K. et al. (2004). Detection of sub-TeV gamma-rays from the Galactic Center direction by CANGAROO-II. ApJ, 606, L115
  173. Figer D.F., Rich R.M., Kim S.S. et al. (2004). An extended star formation history for the Galactic Center from Hubble Space Telescope / NICMOS observations. ApJ, 601, 319
  174. Crocker R.M., Jones D.I., Aharonian F. et al. (2011). Wild at Heart:-The Particle Astrophysics of the Galactic Centre. Mon.Not.Roy.Astron.Soc., 413, 763
  175. Yoast-Hull T.M., Gallagher J. & Zweibel E.G. (2014). The Cosmic Ray Population of the Galactic Central Molecular Zone. ApJ, 790, 86
  176. Yang H.Y., Ruszkowski M., Ricker P. et al. (2012). The Fermi Bubbles: Supersonic AGN Jets with Anisotropic Cosmic Ray Diffusion. ApJ, 761, 185
  177. Law C. (2010). A Multiwavelength View of a Mass Outflow from the Galactic Center . ApJ, 708, 474
  178. Nakashima S., Nobukawa M., Uchida H. et al. (ApJ). Discovery of the recombining plasma in the south of the Galactic center; a relic of the past Galactic center activity?. 2013, 773, 20N
  179. Borkowski K.J., Reynolds S.P., Green D.A. et al. (2014). Nonuniform Expansion of the Youngest Galactic Supernova Remnant G1.9+0.3. ApJ, 790, L18
  180. Aharonian F. et al. (2006). The H.E.S.S. survey of the inner galaxy in very high-energy gamma-rays. ApJ, 636, 777
  181. Aharonian F., Akhperjanian A.G., Barres de Almeida U. et al. (2008). Exploring a SNR/molecular cloud association within HESS J1745-303. A&A, 483, 509
  182. Aharonian F. et al. (2006). H.E.S.S. observations of the Galactic Center region and their possible dark matter interpretation. Phys.Rev.Lett., 97, 221102
  183. Zubovas K., Nayakshin S. & Markoff S. (2012). Sgr A* flares: tidal disruption of asteroids and planets?. MNRAS, 421, 1315
  184. Wommer E., Melia F. & Fatuzzo M. (2008). Diffuse TeV Emission at the Galactic Centre. MNRAS, 387, 987
  185. Melia F. & Fatuzzo M. (2011). Diffusive cosmic-ray acceleration at the Galactic Centre. MNRAS, 410, L23
  186. Amano T., Torii K., Hayakawa T. et al. (2011). Stochastic Acceleration of Cosmic Rays in the Central Molecular Zone of the Galaxy . arXiv:1110.3140
  187. Abeysekara A.U., Alfaro R., Alvarez C. et al. (2013). Sensitivity of the high altitude water Cherenkov detector to sources of multi-TeV gamma rays. Astroparticle Physics, 50, 26
  188. Ackermann M., Ajello M., Atwood W.B. et al. (2016). 2FHL: The Second Catalog of Hard Fermi-LAT Sources. ApJS, 222, 5
  189. Carrigan S., Brun F., Chaves R.C.G. et al. (2013). Charting the TeV Milky Way: H.E.S.S. Galactic plane survey maps, catalog and source populations. arXiv:1307.4868
  190. Ong R. et al. (2013). Recent VERITAS Results on VHE Gamma-ray Sources in Cygnus. proc. 33rd ICRC Rio de Janiero, Brazil
  191. Bartoli B., Bernardini P., Bi X.J. et al. (2013). TeV Gamma-Ray Survey of the Northern Sky Using the ARGO-YBJ Detector . ApJ, 779, 27
  192. Aharonian F. et al. (2002). A Search for TeV Gamma-Ray Emission from SNRs, Pulsars and Unidentified GeV Sources in the Galactic Plane in the Longitude Range between -2 deg and 85 deg.. A&A, 395, 803
  193. Atkins, R and others (2004). TeV Gamma-Ray Survey of the Northern Hemisphere Sky using the Milagro Observatory. ApJ, 608, 680 [197] The flux of very high energy gamma rays from the Crab nebula is set to that measured by HEGRA, in Aharonian, F. et al. (2004), The Crab Nebula and Pulsar between 500 GeV and 80 TeV: Observations with the HEGRA Stereoscopic Air Cherenkov Telescopes, ApJ, 614, 897. The HEGRA Crab nebula spectrum is dN/dE = 2.83 x 10 -11 (E/1 TeV) -2.62 cm -2 s -1 TeV -1 . For an energy threshold of 125 GeV, 1 mCrab = 5.07 × 10 -13 cm -2 s -1 .
  194. H. E. S. S. Collaboration, :, Abramowski A. et al. (2014). Diffuse Galactic gamma-ray emission with H.E.S.S. arXiv:1411.7568
  195. Renaud M. (2009). Latest results on Galactic sources as seen in VHE gamma-rays. Proceedings of 44th Recontres de Moriond 2009
  196. Abdo A.A., Allen B.T., Aune T. et al. (2009). Milagro Observations of Multi-TeV Emission from Galactic Sources in the Fermi Bright Source List. ApJ, 700, L127
  197. Acharya, B. et al. (2013). Introducing the CTA concept. Astroparticle Physics, 43, 3
  198. Schure K.M. & Bell A.R. (2013). Cosmic ray acceleration in young supernova remnants. MNRAS, 435, 1174
  199. Abdo A. et al. (2009). Fermi Large Area Telescope Brght Gamma-Ray Source List. ApJS, 183, 46
  200. TeVCat: http://tevcat.uchicago.edu/
  201. Aharonian F. et al. (2006). The H.E.S.S. Survey of the Inner Galaxy in Very High-Energy Gamma-Rays. ApJ, 636, 777
  202. Pietrzy ński G., Graczyk D., Gieren W. et al. (2013). An eclipsing-binary distance to the Large Magellanic Cloud accurate to two per cent. Nature, 495, 76
  203. van der Marel R.P. (2006). The Large Magellanic Cloud: structure and kinematics. In M. Livio & T.M. Brown (editors), The Local Group as an Astrophysical Laboratory, pp. 47-71
  204. Hughes A., Staveley-Smith L., Kim S. et al. (2007). An Australia Telescope Compact Array 20-cm radio continuum study of the Large Magellanic Cloud. MNRAS, 382, 543
  205. Walborn N.R., Sana H., Sim ón-Díaz S. et al. (2014). The VLT-FLAMES Tarantula Survey. XIV. The O-type stellar content of 30 Doradus. A&A, 564, A40
  206. McCray R. (1993). Supernova 1987A revisited. ARA&A, 31, 175
  207. Bozzetto L.M., Filipović M.D., Vukotić B. et al. (2017). Statistical Analysis of Supernova Remnants in the Large Magellanic Cloud. ApJS, 230, 2
  208. Crowther P.A., Schnurr O., Hirschi R. et al. (2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150M solar stellar mass limit. MNRAS, 408, 731
  209. References
  210. Lawton B., Gordon K.D., Babler B. et al. (2010). Spitzer Analysis of H II Region Complexes in the Magellanic Clouds: Determining a Suitable Monochromatic Obscured Star Formation Indicator . ApJ, 716, 453
  211. Dunne B.C., Points S.D. & Chu Y.H. (2001). X-Rays from Superbubbles in the Large Magellanic Cloud. VI. A Sample of Thirteen Superbubbles. ApJS, 136, 119
  212. Kim S., Dopita M.A., Staveley-Smith L. et al. (1999). H I Shells in the Large Magellanic Cloud. AJ, 118, 2797
  213. Marshall F.E., Gotthelf E.V., Zhang W. et al. (1998). Discovery of an Ultrafast X-Ray Pulsar in the Supernova Remnant N157B. ApJ, 499, L179
  214. Seward F.D., Harnden Jr. F.R. & Helfand D.J. (1984). Discovery of a 50 millisecond pulsar in the Large Magellanic Cloud. ApJ, 287, L19
  215. de Grijs R. & Anders P. (2006). How well do we know the age and mass distributions of the star cluster system in the Large Magellanic Cloud?. MNRAS, 366, 295
  216. Ackermann M., Albert A., Atwood W.B. et al. (2016). Deep view of the Large Magellanic Cloud with six years of Fermi-LAT observations. A&A, 586, A71
  217. H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2012). Discovery of gamma-ray emission from the extragalactic pulsar wind nebula N 157B with H.E.S.S.. A&A, 545, L2
  218. Chevalier R.A. & Dwarkadas V.V. (1995). The Presupernova H II Region around SN 1987A. ApJ, 452, L45
  219. Zanardo G., Staveley-Smith L., Ball L. et al. (2010). Multifrequency Radio Measurements of Supernova 1987A Over 22 Years. ApJ, 710, 1515
  220. Maggi P., Haberl F., Kavanagh P.J. et al. (2016). The population of X-ray supernova remnants in the Large Magellanic Cloud. A&A, 585, A162
  221. Ackermann M., Ajello M., Allafort A. et al. (2011). A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbub- ble. Science, 334, 1103
  222. Barger K.A., Lehner N. & Howk J.C. (2016). Down-the-barrel and Transverse Observations of the Large Magellanic Cloud: Evidence for a Symmetric Galactic Wind on the Near and Far Sides of the Galaxy. ApJ, 817, 91
  223. Corbet R.H.D., Chomiuk L., Coe M.J. et al. (2016). A Luminous Gamma-ray Binary in the Large Magellanic Cloud. ApJ, 829, 105
  224. Gelfand J., Breton R., Ng C.Y. et al. (2015). Pulsar Wind Nebulae in the SKA era. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 46
  225. Keane E., Bhattacharyya B., Kramer M. et al. (2015). A Cosmic Census of Radio Pulsars with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 40
  226. Indebetouw R. & SN1987A ALMA Cycle 0 Team (2014). ALMA resolves SN 1987A's dust factory and particle accelerator . In American Astronomical Society Meeting Abstracts #223, volume 223 of American Astronomical Society Meeting Abstracts, p. 354.37
  227. Mellinger A. (2009). A Color All-Sky Panorama Image of the Milky Way. PASP, 121, 1180
  228. Kim S., Staveley-Smith L., Dopita M.A. et al. (2003). A Neutral Hydrogen Survey of the Large Magellanic Cloud: Aperture Synthesis and Multibeam Data Combined. ApJS, 148, 473
  229. Berezhko E.G., Ksenofontov L.T. & V ölk H.J. (2011). Expected Gamma-Ray Emission of Supernova Remnant SN 1987A. ApJ, 732, 58
  230. -(2015). Re-examination of the Expected Gamma-Ray Emission of Supernova Remnant SN 1987A. ApJ, 810, 63
  231. Williams B.J., Borkowski K.J., Reynolds S.P. et al. (2011). Dusty Blast Waves of Two Young Large Magellanic Cloud Supernova Remnants: Constraints on Post-shock Compression. ApJ, 729, 65
  232. Park S., Hughes J.P., Slane P.O. et al. (2012). An X-Ray Study of Supernova Remnant N49 and Soft Gamma-Ray Repeater 0526-66 in the Large Magellanic Cloud. ApJ, 748, 117
  233. Williams B.J., Borkowski K.J., Reynolds S.P. et al. (2014). Spitzer Observations of the Type Ia Supernova Remnant N103B: Kepler's Older Cousin?. ApJ, 790, 139
  234. Borkowski K.J., Hendrick S.P. & Reynolds S.P. (2006). Dense, Fe-rich Ejecta in Supernova Remnants DEM L238 and DEM L249: A New Class of Type Ia Supernova?. ApJ, 652, 1259
  235. Brantseg T., McEntaffer R.L., Bozzetto L.M. et al. (2014). A Multi-wavelength Look at the Young Plerionic Supernova Remnant 0540-69.3. ApJ, 780, 50
  236. Martin J., Torres D.F., Cillis A. et al. (2014). Is there room for highly magnetized pulsar wind nebulae among those non-detected at TeV?. MNRAS, 443, 138
  237. Bozzetto L.M., Filipović M.D., Crawford E.J. et al. (2012). Multifrequency study of the Large Magellanic Cloud supernova remnant J0529-6653 near pulsar B0529-66. MNRAS, 420, 2588
  238. Martin P. (2014). Interstellar gamma-ray emission from cosmic rays in star-forming galaxies. A&A, 564, A61
  239. Bykov A.M. (2014). Nonthermal particles and photons in starburst regions and superbubbles. Astron Astrophys Rev, 22, 77
  240. Urry C.M. & Padovani P. (1995). Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP, 107, 803
  241. Henri G. & Saug é L. (2006). The Bulk Lorentz Factor Crisis of TeV Blazars: Evidence for an Inhomogeneous Pileup Energy Distribution?. ApJ, 640, 185
  242. Inoue Y., Totani T. & Mori M. (2010). Prospects for a Very High-Energy Blazar Survey by the Next-Generation Cherenkov Telescopes. PASJ, 62, 1005
  243. Inoue Y. & Totani T. (2009). The Blazar Sequence and the Cosmic Gamma-ray Background Radiation in the Fermi Era. ApJ, 702, 523-536
  244. Inoue Y., Kalashev O.E. & Kusenko A. (2014). Prospects for future very high-energy gamma-ray sky survey: Impact of secondary gamma rays. Astroparticle Physics, 54, 118
  245. Ackermann M. et al. (2011). The Second Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope. ApJ, 743, 171
  246. Hayashida M., Stawarz Ł., Cheung C.C. et al. (2013). Discovery of GeV Emission from the Circinus Galaxy with the Fermi Large Area Telescope. ApJ, 779, 131
  247. Di Mauro M., Calore F., Donato F. et al. (2014). Diffuse γ-Ray Emission from Misaligned Active Galactic Nuclei. ApJ, 780, 161
  248. Inoue Y. & Tanaka Y.T. (2016). Lower Bound on the Cosmic TeV Gamma-Ray Background Radiation. ApJ, 818, 187
  249. Atwood W., Albert A., Baldini L. et al. (2013). Pass 8: Toward the Full Realization of the Fermi-LAT Scientific Potential. arXiv:1303.3514
  250. Szanecki M., Sobczy ńska D., Niedźwiecki A. et al. (2015). Monte Carlo simulations of alternative sky observation modes with the Cherenkov Telescope Array . Astroparticle Physics, 67, 33
  251. M ész áros P. (2013). Gamma ray bursts. Astroparticle Physics, 43, 134
  252. Kumar P. & Zhang B. (2015). The physics of gamma-ray bursts and relativistic jets. Phys. Rep., 561, 1
  253. Ellis J. & Mavromatos N.E. (2013). Probes of Lorentz violation. Astroparticle Physics, 43, 50
  254. Bednarek W. (2013). High energy γ-ray emission from compact galactic sources in the context of observations with the next generation Cherenkov Telescope Arrays. Astroparticle Physics, 43, 81
  255. B ühler R. & Blandford R. (2014). The surprising Crab pulsar and its nebula: a review. Reports on Progress in Physics, 77, 6, 066901
  256. Dubus G. (2015). Gamma-ray emission from binaries in context. Comptes Rendus Physique, 16, 661
  257. O'Brien P.T. & Smartt S.J. (2013). Interpreting signals from astrophysical transient experiments. Royal Society of London Philosophical Transactions Series A, 371, 20498
  258. Komossa S. (2015). Tidal disruption of stars by supermassive black holes: Status of observations. Journal of High Energy Astrophysics, 7, 148
  259. Brown P.J., Roming P.W.A. & Milne P.A. (2015). The first ten years of Swift supernovae. Journal of High Energy Astrophysics, 7, 111
  260. Katz J.I. (2016). Fast radio bursts, A brief review: Some questions, fewer answers. Modern Physics Letters A, 31, 1630013
  261. Halzen F. (2013). Pionic photons and neutrinos from cosmic ray accelerators. Astroparticle Physics, 43, 155
  262. Ahlers M. & Halzen F. (2015). High-energy cosmic neutrino puzzle: a review. Reports on Progress in Physics, 78, 12, 126901
  263. IceCube Collaboration, Aartsen M.G., Abbasi R. et al. (2013). The IceCube Neutrino Observatory Part I: Point Source Searches. arXiv:1309.6979
  264. The IceCube Collaboration, Aartsen M.G., Abraham K. et al. (2015). The IceCube Neutrino Observatory -Contributions to ICRC 2015 Part I: Point Source Searches. arXiv:1510.05222
  265. Abbott B.P., Abbott R., Abbott T.D. et al. (2016). Localization and broadband follow-up of the gravitational-wave transient GW150914. arXiv:1602.08492
  266. Connaughton V., Burns E., Goldstein A. et al. (2016). Fermi GBM Observations of LIGO Gravitational Wave event GW150914. ApJ, 826, L6
  267. Fern ández R. & Metzger B.D. (2015). Electromagnetic Signatures of Neutron Star Mergers in the Advanced LIGO Era. arXiv:1512.05435
  268. Doro M., Conrad J., Emmanoulopoulos D. et al. (2013). Dark matter and fundamental physics with the Cherenkov Telescope Array . Astropar- ticle Physics, 43, 189
  269. Bulgarelli A., Fioretti V., Zoli A. et al. (2015). The On-Site Analysis of the Cherenkov Telescope Array. arXiv:1509.01963
  270. Fioretti V., Bulgarelli A., Zoli A. et al. (2015). Real-Time Analysis sensitivity evaluation of the Cherenkov Telescope Array. proc. 34th ICRC, The Hague, Netherlands
  271. Gerard L. (2015). Divergent pointing with the Cherenkov Telescope Array for surveys and beyond. arXiv:1508.06197
  272. Abdo A.A., Ackermann M., Arimoto M. et al. (2009). Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science, 323, 1688
  273. Finke J.D., Razzaque S. & Dermer C.D. (2010). Modeling the Extragalactic Background Light from Stars and Dust. ApJ, 712, 238
  274. Kouveliotou C., Meegan C.A., Fishman G.J. et al. (1993). Identification of two classes of gamma-ray bursts. ApJ, 413, L101
  275. Mereghetti S., Pons J.A. & Melatos A. (2015). Magnetars: Properties, Origin and Evolution. Space Sci. Rev., 191, 315
  276. Torres D.F., Rea N., Esposito P. et al. (2012). A Magnetar-like Event from LS I +61 303 and Its Nature as a Gamma-Ray Binary . ApJ, 744, 106
  277. Tavani M., Bulgarelli A., Vittorini V. et al. (2011). Discovery of Powerful Gamma-Ray Flares from the Crab Nebula. Science, 331, 736
  278. Abdo A.A., Ackermann M., Ajello M. et al. (2011). Gamma-Ray Flares from the Crab Nebula. Science, 331, 739
  279. Taylor G.B. & Granot J. (2006). The Giant Flare from SGR 1806-20 and its Radio Afterglow. Modern Physics Letters A, 21, 2171
  280. Dubus G. (2013). Gamma-ray binaries and related systems. A&A Rev., 21, 64
  281. Tavani M., Bulgarelli A., Piano G. et al. (2009). Extreme particle acceleration in the microquasar CygnusX-3. Nature, 462, 620
  282. Zanin R., Fern ández-Barral A., de O ña Wilhelmi E. et al. (2016). Gamma rays detected from Cygnus X-1 with likely jet origin. A&A, 596, A55
  283. Acciari V.A., Aliu E., Araya M. et al. (2011). Gamma-Ray Observations of the Be/Pulsar Binary 1A 0535+262 During a Giant X-Ray Outburst. ApJ, 733, 96
  284. Stappers B.W., Archibald A.M., Hessels J.W.T. et al. (2014). A State Change in the Missing Link Binary Pulsar System PSR J1023+0038. ApJ, 790, 39
  285. Ackermann M., Ajello M., Albert A. et al. (2014). Fermi establishes classical novae as a distinct class of gamma-ray sources. Science, 345, 554
  286. Metzger B.D., Caprioli D., Vurm I. et al. (2016). Novae as Tevatrons: prospects for CTA and IceCube. MNRAS, 457, 1786
  287. Ackermann M., Ajello M., Asano K. et al. (2013). The First Fermi-LAT Gamma-Ray Burst Catalog. ApJS, 209, 11
  288. Gehrels N. & Cannizzo J.K. (2013). High-energy transients. Philosophical Transactions of the Royal Society of London Series A, 371, 20120270
  289. Kulkarni S.R. (2012). Cosmic Explosions (Optical Transients). arXiv:1202.2381
  290. Fender R.P. & Bell M.E. (2011). Radio transients: an antediluvian review. Bulletin of the Astronomical Society of India, 39, 315
  291. Fender R.P., Anderson G.E., Osten R. et al. (2015). A prompt radio transient associated with a gamma-ray superflare from the young M dwarf binary DG CVn. MNRAS, 446, L66
  292. Ghirlanda G., Salvaterra R., Campana S. et al. (2015). Unveiling the population of orphan γ-ray bursts. A&A, 578, A71
  293. Bloom J.S., Giannios D., Metzger B.D. et al. (2011). A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star . Science, 333, 203
  294. van Velzen S., Anderson G.E., Stone N.C. et al. (2016). A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li. Science, 351, 62
  295. Chen X., G ómez-Vargas G.A. & Guillochon J. (2016). The Gamma-ray Afterglows of Tidal Disruption Events. MNRAS
  296. Campana S., Mangano V., Blustin A.J. et al. (2006). The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature, 442, 1008
  297. Soderberg A.M., Berger E., Page K.L. et al. (2008). An extremely luminous X-ray outburst at the birth of a supernova. Nature, 453, 469
  298. Kashiyama K., Murase K., Horiuchi S. et al. (2013). High-energy Neutrino and Gamma-Ray Transients from Trans-relativistic Supernova Shock Breakouts. ApJ, 769, L6
  299. Keane E.F., Johnston S., Bhandari S. et al. (2016). The host galaxy of a fast radio burst. Nature, 530, 453
  300. Williams P.K.G. & Berger E. (2016). No precise localization for FRB 150418: claimed radio transient is AGN variability. ApJ, 821, L22
  301. Spitler L.G., Scholz P., Hessels J.W.T. et al. (2016). A repeating fast radio burst. Nature, 531, 202
  302. Chatterjee S., Law C.J., Wharton R.S. et al. (2017). A direct localization of a fast radio burst and its host. Nature, 541, 58
  303. Lyubarsky Y. (2014). A model for fast extragalactic radio bursts. MNRAS, 442, L9
  304. Andersson N., Baker J., Belczynski K. et al. (2013). The transient gravitational-wave sky. Classical and Quantum Gravity, 30, 19, 193002
  305. Berger E. (2014). Short-Duration Gamma-Ray Bursts. ARA&A, 52, 43
  306. Keane E.F. & SUPERB Collaboration (2016). Fast Radio Bursts: Searches, Sensitivities and Implications. arXiv:1602.05165
  307. Ackermann M., Ajello M., Albert A. et al. (2013). The Fermi All-sky Variability Analysis: A List of Flaring Gamma-Ray Sources and the Search for Transients in Our Galaxy. ApJ, 771, 57
  308. Ackermann M. et al. (2011). Detection of a Spectral Break in the Extra Hard Component of GRB 090926A. ApJ, 729, 114
  309. Fermi Large Area Telescope Team, Ackermann M., Ajello M. et al. (2012). Constraining the High-energy Emission from Gamma-Ray Bursts with Fermi. ApJ, 754, 121
  310. Ackermann M., Ajello M., Asano K. et al. (2014). Fermi-LAT Observations of the Gamma-Ray Burst GRB 130427A. Science, 343, 42
  311. Kouveliotou C., Granot J., Racusin J.L. et al. (2013). NuSTAR Observations of GRB 130427A Establish a Single Component Synchrotron Afterglow Origin for the Late Optical to Multi-GeV Emission. ApJ, 779, L1
  312. Atwood W.B., Baldini L., Bregeon J. et al. (2013). New Fermi-LAT Event Reconstruction Reveals More High-energy Gamma Rays from Gamma-Ray Bursts. ApJ, 774, 76
  313. Abdo A.A., Ackermann M., Ajello M. et al. (2009). A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 462, 331
  314. Vasileiou V., Jacholkowska A., Piron F. et al. (2013). Constraints on Lorentz invariance violation from Fermi-Large Area Telescope observations of gamma-ray bursts. Phys. Rev. D, 87, 12, 122001
  315. Acciari V.A., Aliu E., Arlen T. et al. (2011). VERITAS Observations of Gamma-Ray Bursts Detected by Swift. ApJ, 743, 62
  316. Aleksić J., Ansoldi S., Antonelli L.A. et al. (2014). MAGIC upper limits on the GRB 090102 afterglow. MNRAS, 437, 3103
  317. H.E.S.S. Collaboration, Abramowski A., Aharonian F. et al. (2014). Search for TeV Gamma-ray Emission from GRB 100621A, an extremely bright GRB in X-rays, with H.E.S.S.. A&A, 565, A16
  318. Gilmore R.C., Bouvier A., Connaughton V. et al. (2013). IACT observations of gamma-ray bursts: prospects for the Cherenkov Telescope Array . Experimental Astronomy, 35, 413
  319. Kakuwa J., Murase K., Toma K. et al. (2012). Prospects for detecting gamma-ray bursts at very high energies with the Cherenkov Telescope Array . MNRAS, 425, 514
  320. Abeysekara A.U., Aguilar J.A., Aguilar S. et al. (2012). On the sensitivity of the HAWC observatory to gamma-ray bursts. Astroparticle Physics, 35, 641
  321. Taboada I. & Gilmore R.C. (2014). Prospects for the detection of GRBs with HAWC. Nuclear Instruments and Methods in Physics Research A, 742, 276
  322. Malyshev D., Zdziarski A.A. & Chernyakova M. (2013). High-energy gamma-ray emission from Cyg X-1 measured by Fermi and its theoretical implications. MNRAS, 434, 2380
  323. Bodaghee A., Tomsick J.A., Pottschmidt K. et al. (2013). Gamma-Ray Observations of the Microquasars Cygnus X-1, Cygnus X-3, GRS 1915+105, and GX 339-4 with the Fermi Large Area Telescope. ApJ, 775, 98
  324. Mariotti M. (2010). No significant enhancement in the VHE gamma-ray flux of the Crab Nebula measured by MAGIC in September 2010. The Astronomer's Telegram, 2967, 1
  325. Ong R.A. (2010). Search for an Enhanced TeV Gamma-Ray Flux from the Crab Nebula with VERITAS. The Astronomer's Telegram, 2968, 1
  326. H. E. S. S. Collaboration, Abramowski A., Aharonian F. et al. (2014). H.E.S.S. observations of the Crab during its March 2013 GeV gamma-ray flare. A&A, 562, L4
  327. Aleksić J., Antonelli L.A., Antoranz P. et al. (2010). Magic Constraints on γ-ray Emission from Cygnus X-3. ApJ, 721, 843
  328. Ahnen M.L., Ansoldi S., Antonelli L.A. et al. (2015). Very high-energy γ-ray observations of novae and dwarf novae with the MAGIC telescopes. A&A, 582, A67
  329. Albert J., Aliu E., Anderhub H. et al. (2007). Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Binary Cygnus X-1.
  330. ApJ, 665, L51
  331. Peng F.K., Tang Q.W. & Wang X.Y. (2016). Search for High-energy Gamma-ray Emission from Tidal Disruption Events with the Fermi Large Area Telescope. ApJ, 825, 47
  332. Aliu E., Arlen T., Aune T. et al. (2011). VERITAS Observations of the Unusual Extragalactic Transient Swift J164449.3+573451. ApJ, 738, L30
  333. Aleksić J., Antonelli L.A., Antoranz P. et al. (2013). Very high energy gamma-ray observation of the peculiar transient event Swift J1644+57 with the MAGIC telescopes and AGILE. A&A, 552, A112
  334. H. E. S. S. Collaboration, Abdalla H., Abramowski A. et al. (2017). First limits on the very-high energy gamma-ray afterglow emission of a fast radio burst. H.E.S.S. observations of FRB 150418. A&A, 597, A115
  335. Santander M., VERITAS f.t. & IceCube Collaborations (2015). Searching for TeV gamma-ray emission associated with IceCube high-energy neutrinos using VERITAS. proc. 34th ICRC The Hague, Netherlands
  336. Sch üssler F., Balzer A., Brun F. et al. (2015). The H.E.S.S. multi-messenger program. proc. 34th ICRC The Hague, Netherlands
  337. Adri án-Martínez S., Ageron M., Albert A. et al. (2016). Optical and X-ray early follow-up of ANTARES neutrino alerts. J. Cosmology Astropart. Phys., 2, 062
  338. IceCube Collaboration, Aartsen M.G., Abraham K. et al. (2016). Very High-Energy Gamma-Ray Follow-Up Program Using Neutrino Triggers from IceCube. arXiv:1610.01814
  339. BAIKAL-GVD Scientific-Technical Report. http://baikalweb.jinr.ru/gvd/BAIKAL-GVD_En.pdf
  340. The IceCube-Gen2 Collaboration, :, Aartsen M.G. et al. (2015). IceCube-Gen2 -The Next Generation Neutrino Observatory at the South Pole: Contributions to ICRC 2015. arXiv:1510.05228
  341. ANTARES Collaboration, IceCube Collaboration, LIGO Scientific Collaboration et al. (2016). High-energy Neutrino follow-up search of Gravi- tational Wave Event GW150914 with ANTARES and IceCube. arXiv:1602.05411
  342. Perna R., Lazzati D. & Giacomazzo B. (2016). Short Gamma-Ray Bursts from the Merger of Two Black Holes. ApJ, 821, L18
  343. Lehner L. & Pretorius F. (2014). Numerical Relativity and Astrophysics. ARA&A, 52, 661
  344. Kyutoku K., Ioka K. & Shibata M. (2014). Ultrarelativistic electromagnetic counterpart to binary neutron star mergers. MNRAS, 437, L6
  345. Tanvir N.R., Levan A.J., Fruchter A.S. et al. (2013). A 'kilonova' associated with the short-duration γ-ray burst GRB 130603B. Nature, 500, 547
  346. Godet O., Nasser G., Atteia J.. et al. (2014). The x-/gamma-ray camera ECLAIRs for the gamma-ray burst mission SVOM. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 9144 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  347. Finnegan G. & for the VERITAS Collaboration (2011). Orbit Mode observation Technique Developed for VERITAS. proc. Fermi Symposium 2011
  348. Greiner J., Kr ühler T., Klose S. et al. (2011). The nature of "dark" gamma-ray bursts. A&A, 526, A30
  349. Bagoly Z., Bal ázs L.G., Horv áth I. et al. (2008). Different satellites-different GRB redshift distributions?. In Y.F. Huang, Z.G. Dai & B. Zhang (editors), American Institute of Physics Conference Series, volume 1065 of American Institute of Physics Conference Series, pp. 119-122
  350. Loh A., Corbel S., Dubus G. et al. (2016). High-energy gamma-ray observations of the accreting black hole V404 Cygni during its 2015 June outburst. MNRAS, 462, L111
  351. Abbott B.P., Abbott R., Abbott T.D. et al. (2016). The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Sur- rounding GW150914. arXiv:1602.03842
  352. Kneiske T.M., Bretz T., Mannheim K. et al. (2004). Implications of cosmological gamma-ray absorption. II. Modification of gamma-ray spectra. A&A, 413, 807
  353. Gilmore R.C., Somerville R.S., Primack J.R. et al. (2012). Semi-analytic modelling of the extragalactic background light and consequences for extragalactic gamma-ray spectra. MNRAS, 422, 3189
  354. Inoue Y., Inoue S., Kobayashi M.A.R. et al. (2013). Extragalactic Background Light from Hierarchical Galaxy Formation: Gamma-Ray Attenu- ation up to the Epoch of Cosmic Reionization and the First Stars. ApJ, 768, 197
  355. Kohri K., Ohira Y. & Ioka K. (2012). Gamma-ray flare and absorption in the Crab nebula: lovely TeV-PeV astrophysics. MNRAS, 424, 2249
  356. Fermi LAT Collaboration, Abdo A.A., Ackermann M. et al. (2009). Modulated High-Energy Gamma-Ray Emission from the Microquasar Cygnus X-3. Science, 326, 1512
  357. Padovani P. & Resconi E. (2014). Are both BL Lacs and pulsar wind nebulae the astrophysical counterparts of IceCube neutrino events?. MNRAS, 443, 474
  358. Gaisser T.K. (1990). Cosmic rays and particle physics, (Cambridge University Press)
  359. Antoni T., Apel W.D., Badea A.F. et al. (2005). KASCADE measurements of energy spectra for elemental groups of cosmic rays: Results and open problems. Astroparticle Physics, 24, 1
  360. Hillas A.M. (2005). TOPICAL REVIEW: Can diffusive shock acceleration in supernova remnants account for high-energy galactic cosmic rays?. Journal of Physics G Nuclear Physics, 31, 95
  361. Drury L.O. (1983). An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Reports on Progress in Physics, 46, 973
  362. Bell A.R. (2004). Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS, 353, 550
  363. Drury L.O., Aharonian F.A. & Voelk H.J. (1994). The gamma-ray visibility of supernova remnants. A test of cosmic ray origin. A&A, 287, 959
  364. Ackermann M., Ajello M., Allafort A. et al. (2013). Detection of the Characteristic Pion-Decay Signature in Supernova Remnants. Science, 339, 807
  365. Aharonian F.A. (2013). Gamma rays from supernova remnants. Astroparticle Physics, 43, 71
  366. Bell A.R., Schure K.M., Reville B. et al. (2013). Cosmic-ray acceleration and escape from supernova remnants. MNRAS, 431, 415
  367. Gabici S. & Aharonian F.A. (2007). Searching for Galactic Cosmic-Ray Pevatrons with Multi-TeV Gamma Rays and Neutrinos. ApJ, 665, L131
  368. Ellison D.C., Patnaude D.J., Slane P. et al. (2010). Efficient Cosmic Ray Acceleration, Hydrodynamics, and Self-Consistent Thermal X-Ray Emission Applied to Supernova Remnant RX J1713.7-3946. ApJ, 712, 287
  369. Casanova S., Jones D.I., Aharonian F.A. et al. (2010). Modeling the Gamma-Ray Emission Produced by Runaway Cosmic Rays in the Environment of RX J1713.7-3946. PASJ, 62, 1127
  370. Stecker F.W. (1971). Cosmic gamma rays. NASA Special Publication, 249
  371. Dermer C.D. (1986). Secondary production of neutral pi-mesons and the diffuse galactic gamma radiation. A&A, 157, 223
  372. Aharonian F., Akhperjanian A.G., Barres de Almeida U. et al. (2008). Energy Spectrum of Cosmic-Ray Electrons at TeV Energies. Physical Review Letters, 101, 26, 261104
  373. Fukui Y., Moriguchi Y., Tamura K. et al. (2003). Discovery of Interacting Molecular Gas toward the TeV Gamma-Ray Peak of the SNR G 347.3-0.5. PASJ, 55, L61
  374. Koyama K., Petre R., Gotthelf E.V. et al. (1995). Evidence for shock acceleration of high-energy electrons in the supernova remnant SN1006. Nature, 378, 255
  375. Enomoto R., Tanimori T., Naito T. et al. (2002). The acceleration of cosmic-ray protons in the supernova remnant RX J1713.7-3946. Nature, 416, 823
  376. Aharonian F.A., Akhperjanian A.G., Aye K.M. et al. (2004). High-energy particle acceleration in the shell of a supernova remnant. Nature, 432, 75
  377. Aharonian F., Akhperjanian A.G., Bazer-Bachi A.R. et al. (2005). Detection of TeV γ-ray emission from the shell-type supernova remnant RX J0852.0-4622 with HESS. A&A, 437, L7
  378. Acciari V.A., Aliu E., Arlen T. et al. (2011). Discovery of TeV Gamma-ray Emission from Tycho's Supernova Remnant. ApJ, 730, L20
  379. Albert J., Aliu E., Anderhub H. et al. (2007). Observation of VHE γ-rays from Cassiopeia A with the MAGIC telescope. A&A, 474, 937
  380. Abdo A.A., Ackermann M., Ajello M. et al. (2011). Observations of the Young Supernova Remnant RX J1713.7-3946 with the Fermi Large Area Telescope. ApJ, 734, 28
  381. Fukui Y. (2013). Molecular and Atomic Gas in the Young TeV γ-Ray SNRs RX J1713.7-3946 and RX J0852.0-4622; Evidence for the Hadronic Production of γ-Rays. In D.F. Torres & O. Reimer (editors), Cosmic Rays in Star-Forming Environments, volume 34 of Advances in Solid State Physics, p. 249
  382. Sano H., Fukuda T., Yoshiike S. et al. (2014). A detailed study of non-thermal X-ray properties and interstellar gas toward the \gamma-ray supernova remnant RX J1713.7-3946. arXiv:1401.7418
  383. H. E. S. S. Collaboration, Abdalla H., Abdalla H. et al. (2016). H.E.S.S. observations of RX J1713.7-3946 with improved angular and spectral resolution; evidence for gamma-ray emission extending beyond the X-ray emitting shell. arXiv:1609.08671
  384. Berezhko E.G., P ühlhofer G. & V ölk H.J. (2009). Theory of cosmic ray and γ-ray production in the supernova remnant RX J0852.0-4622. A&A, 505, 641
  385. H. E. S. S. Collaboration, Abdalla H., Abramowski A. et al. (2016). Deeper H.E.S.S. Observations of Vela Junior (RX J0852.0-4622): Morphol- ogy Studies and Resolved Spectroscopy. arXiv:1610.01863
  386. Pedaletti G., Torres D.F., Gabici S. et al. (2013). On the potential of the Cherenkov Telescope Array for the study of cosmic-ray diffusion in molecular clouds. A&A, 550, A123
  387. Peng F.K., Wang X.Y., Liu R.Y. et al. (2016). First Detection of GeV Emission from an Ultraluminous Infrared Galaxy: Arp 220 as Seen with the Fermi Large Area Telescope. ApJ, 821, L20
  388. Griffin R.D., Dai X. & Thompson T.A. (2016). Constraining Gamma-Ray Emission from Luminous Infrared Galaxies with Fermi-LAT; Tentative Detection of Arp 220. ApJ, 823, L17
  389. Kennicutt R.C. & Evans N.J. (2012). Star Formation in the Milky Way and Nearby Galaxies. ARA&A, 50, 531
  390. Socrates A., Davis S.W. & Ramirez-Ruiz E. (2008). The Eddington Limit in Cosmic Rays: An Explanation for the Observed Faintness of Starbursting Galaxies. ApJ, 687, 202
  391. Jubelgas M., Springel V., Enßlin T. et al. (2008). Cosmic ray feedback in hydrodynamical simulations of galaxy formation. A&A, 481, 33
  392. Ceccarelli C., Hily-Blant P., Montmerle T. et al. (2011). Supernova-enhanced Cosmic-Ray Ionization and Induced Chemistry in a Molecular Cloud of W51C. ApJ, 740, L4
  393. Papadopoulos P.P. & Thi W.F. (2013). The Initial Conditions of Star Formation: Cosmic Rays as the Fundamental Regulators. In D.F. Torres & O. Reimer (editors), Cosmic Rays in Star-Forming Environments, volume 34 of Advances in Solid State Physics, p. 41
  394. Booth C.M., Agertz O., Kravtsov A.V. et al. (2013). Simulations of Disk Galaxies with Cosmic Ray Driven Galactic Winds. ApJ, 777, L16
  395. Salem M., Bryan G.L. & Hummels C. (2014). Cosmological Simulations of Galaxy Formation with Cosmic Rays. ApJ, 797, L18
  396. Aharonian F., Akhperjanian A., Beilicke M. et al. (2002). An unidentified TeV source in the vicinity of Cygnus OB2. A&A, 393, L37
  397. Abramowski A., Acero F., Aharonian F. et al. (2012). Discovery of extended VHE γ-ray emission from the vicinity of the young massive stellar cluster Westerlund 1. A&A, 537, A114
  398. Casse M. & Paul J.A. (1980). Local gamma rays and cosmic-ray acceleration by supersonic stellar winds. ApJ, 237, 236
  399. Meier D.S., Walter F., Bolatto A.D. et al. (2015). Alma multi-line imaging of the nearby starburst ngc 253. The Astrophysical Journal, 801, 1, 63
  400. Kennicutt Jr. R.C. (1998). Star Formation in Galaxies Along the Hubble Sequence. ARA&A, 36, 189
  401. Ackermann M., Ajello M., Allafort A. et al. (2012). GeV Observations of Star-forming Galaxies with the Fermi Large Area Telescope. ApJ, 755, 164
  402. Abramowski A., Acero F., Aharonian F. et al. (2012). Spectral Analysis and Interpretation of the γ-Ray Emission from the Starburst Galaxy NGC 253. ApJ, 757, 158
  403. Reitberger K., Reimer A., Reimer O. et al. (2015). The first full orbit of η Carinae seen by Fermi. A&A, 577, A100
  404. Preibisch T., Ratzka T., Kuderna B. et al. (2011). Deep wide-field near-infrared survey of the Carina Nebula. A&A, 530, A34
  405. Hamaguchi K., Petre R., Matsumoto H. et al. (2007). Suzaku Observation of Diffuse X-Ray Emission from the Carina Nebula. PASJ, 59, 151
  406. Ezoe Y., Hamaguchi K., Gruendl R.A. et al. (2009). Suzaku and XMM-Newton Observations of Diffuse X-Ray Emission from the Eastern Tip Region of the Carina Nebula. PASJ, 61, 123
  407. Townsley L.K., Broos P.S., Chu Y.H. et al. (2011). The Chandra Carina Complex Project: Deciphering the Enigma of Carina's Diffuse X-ray Emission. ApJS, 194, 15
  408. HESS Collaboration, Abramowski A., Acero F. et al. (2012). HESS observations of the Carina nebula and its enigmatic colliding wind binary Eta Carinae. MNRAS, 424, 128
  409. Abramowski A., Acero F., Aharonian F. et al. (2011). Revisiting the Westerlund 2 field with the HESS telescope array. A&A, 525, A46+
  410. Bartoli B., Bernardini P., Bi X.J. et al. (2014). Identification of the TeV Gamma-Ray Source ARGO J2031+4157 with the Cygnus Cocoon. ApJ, 790, 152
  411. Popkow A. & for the VERITAS Collaboration (2015). The VERITAS Survey of the Cygnus Region of the Galaxy. arXiv:1508.06684
  412. Kothes R. & Dougherty S.M. (2007). The distance and neutral environment of the massive stellar cluster Westerlund 1. A&A, 468, 993
  413. Ohm S., Hinton J.A. & White R. (2013). γ-ray emission from the Westerlund 1 region. MNRAS, 434, 2289
  414. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Large Area Telescope observations of Local Group galaxies: detection of M 31 and search for M 33. A&A, 523, L2
  415. Dorfi E.A. & Breitschwerdt D. (2012). Time-dependent galactic winds. I. Structure and evolution of galactic outflows accompanied by cosmic ray acceleration. A&A, 540, A77
  416. V ölk H.J., Klein U. & Wielebinski R. (1989). M82, the Galaxy, and the dependence of cosmic ray energy production on the supernova rate. A&A, 213, L12
  417. VERITAS Collaboration, Acciari V.A., Aliu E. et al. (2009). A connection between star formation activity and cosmic rays in the starburst galaxy M82. Nature, 462, 770
  418. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Detection of Gamma-Ray Emission from the Starburst Galaxies M82 and NGC 253 with the Large Area Telescope on Fermi. ApJ, 709, L152
  419. Domingo-Santamaría E. & Torres D.F. (2005). High energy γ-ray emission from the starburst nucleus of NGC 253. A&A, 444, 403
  420. Rephaeli Y., Arieli Y. & Persic M. (2010). High-energy emission from the starburst galaxy NGC 253. MNRAS, 401, 473
  421. Thompson T.A., Quataert E., Waxman E. et al. (2006). Magnetic Fields in Starburst Galaxies and the Origin of the FIR-Radio Correlation. ApJ, 645, 186
  422. Lacki B.C., Thompson T.A., Quataert E. et al. (2011). On the GeV and TeV Detections of the Starburst Galaxies M82 and NGC 253. ApJ, 734, 107
  423. Murphy E.J., Porter T.A., Moskalenko I.V. et al. (2012). Characterizing Cosmic-Ray Propagation in Massive Star-forming Regions: The Case of 30 Doradus and the Large Magellanic Cloud. ApJ, 750, 126
  424. Persic M., Rephaeli Y. & Arieli Y. (2008). Very-high-energy emission from M 82. A&A, 486, 143
  425. Torres D.F., Cillis A., Lacki B. et al. (2012). Building up the spectrum of cosmic rays in star-forming regions. MNRAS, 423, 822
  426. Mannheim K., Els ässer D. & Tibolla O. (2012). Gamma-rays from pulsar wind nebulae in starburst galaxies. Astroparticle Physics, 35, 797
  427. Ohm S. & Hinton J.A. (2013). Non-thermal emission from pulsar-wind nebulae in starburst galaxies. MNRAS, 429, L70
  428. Sanders D.B. & Mirabel I.F. (1996). Luminous Infrared Galaxies. ARA&A, 34, 749
  429. Pavlidou V. & Fields B.D. (2002). The Guaranteed Gamma-Ray Background. ApJ, 575, L5
  430. Smith H.E., Lonsdale C.J., Lonsdale C.J. et al. (1998). A Starburst Revealed-Luminous Radio Supernovae in the Nuclei of ARP 220. ApJ, 493, L17
  431. Torres D.F. (2004). Theoretical Modeling of the Diffuse Emission of Gamma Rays from Extreme Regions of Star Formation: The Case of ARP 220. ApJ, 617, 966
  432. Torres D.F. & Domingo-Santamaría E. (2005). Some Comments on the High Energy Emission from Regions of Star Formation Beyond the Galaxy . Modern Physics Letters A, 20, 2827
  433. Albert J., Aliu E., Anderhub H. et al. (2007). First Bounds on the Very High Energy γ-Ray Emission from Arp 220. ApJ, 658, 245
  434. Fleischhack, H. and for the VERITAS Collaboration (2015). Upper limits on the VHE gamma-ray flux from the ULIRG Arp 220 and other galaxies with VERITAS. proc. 34th ICRC, The Hague, Netherlands
  435. Kn ödlseder J., Mayer M., Deil C. et al. (2016). GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data. A&A, 593, A1
  436. Inoue Y. (2011). High Energy Gamma-ray Absorption and Cascade Emission in Nearby Starburst Galaxies. ApJ, 728, 11
  437. Armstrong T., Brown A.M., Chadwick P.M. et al. (2017). DBSCAN re-applied to Pass 8 Fermi-LAT data above 100 GeV . AIP Conf. Proc., 1792, 1, 070001
  438. Zech A., Cerruti M. & for the CTA consortium (2013). Signatures of relativistic protons in CTA blazar spectra. Proc. of the 33rd ICRC, Rio de Janeiro, Brazil. Astro-ph/1307.2232
  439. Cerruti M., Zech A., Boisson C. et al. (2015). A hadronic origin for ultra-high-frequency-peaked BL Lac objects. MNRAS, 448, 910
  440. Zech A., Cerruti M. & Mazin D. (2017). Expected signatures from hadronic emission processes in the TeV spectra of BL Lacertae objects. A&A, 602, A25
  441. Sol H., Zech A., Boisson C. et al. (2013). Prospect on intergalactic magnetic field measurements with gamma-ray instruments. In A.G. Koso- vichev, E. de Gouveia Dal Pino & Y. Yan (editors), Solar and Astrophysical Dynamos and Magnetic Activity, volume 294 of IAU Symposium, pp. 459-470
  442. Hardcastle M.J. & Croston J.H. (2011). Modelling TeV γ-ray emission from the kiloparsec-scale jets of Centaurus A and M87 . MNRAS, 415, 133
  443. Franceschini A., Rodighiero G. & Vaccari M. (2008). Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity. A&A, 487, 837
  444. H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2013). Measurement of the extragalactic background light imprint on the spectra of the brightest blazars observed with H.E.S.S.. A&A, 550, A4
  445. Ackermann M. et al. (2012). The Imprint of the Extragalactic Background Light in the Gamma-Ray Spectra of Blazars. Science, 338, 1190
  446. Blandford R.D. & Znajek R.L. (1977). Electromagnetic extraction of energy from Kerr black holes. MNRAS, 179, 433
  447. Ghisellini G., Tavecchio F., Maraschi L. et al. (2014). The power of relativistic jets is larger than the luminosity of their accretion disks. Nature, 515, 376
  448. Ghisellini G., Tavecchio F., Foschini L. et al. (2010). General physical properties of bright Fermi blazars. MNRAS, 402, 497
  449. B öttcher M., Reimer A., Sweeney K. et al. (2013). Leptonic and Hadronic Modeling of Fermi-detected Blazars. ApJ, 768, 54
  450. Cerruti M., Dermer C.D., Lott B. et al. (2013). Gamma-Ray Blazars near Equipartition and the Origin of the GeV Spectral Break in 3C 454.3. ApJ, 771, L4
  451. Dermer C.D., Cerruti M., Lott B. et al. (2014). Equipartition Gamma-Ray Blazars and the Location of the Gamma-Ray Emission Site in 3C 279. ApJ, 782, 82
  452. Poutanen J. & Stern B. (2010). GeV breaks in blazars as a result of gamma-ray absorption within the broad-line region. ApJ Lett, 717, L118
  453. Senturk G.D., Errando M., Boettcher M. et al. (2013). Gamma-ray observational properties of tev-detected blazars. ApJ, 764, 119
  454. Brown A.M. (2013). Locating the γ-ray emission region of the flat spectrum radio quasar PKS 1510-089. MNRAS, 431, 824
  455. Abeysekara A.U., Archambault S., Archer A. et al. (2015). Gamma-Rays from the Quasar PKS 1441+25: Story of an Escape. ApJ, 815, L22
  456. Lindfors E., Nilsson K., Barres de Almeida U. et al. (2013). VHE gamma-ray emission from the FSRQs observed by the MAGIC telescopes. eConf C121028. Proc. of the 2012 Fermi Symposium -eConf C121028, astro-ph/1303.2102
  457. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Spectral Properties of Bright Fermi-Detected Blazars in the Gamma-Ray Band. ApJ, 710, 1271
  458. Costamante L., Ghisellini G., Giommi P. et al. (2001). Extreme synchrotron BL Lac objects. Stretching the blazar sequence. A&A, 371, 512
  459. Bonnoli G., Tavecchio F., Ghisellini G. et al. (2015). An emerging population of BL Lacs with extreme properties: towards a class of EBL and cosmic magnetic field probes?. MNRAS, 451, 611
  460. Katarzy ński K., Ghisellini G., Tavecchio F. et al. (2006). Hard TeV spectra of blazars and the constraints to the infrared intergalactic background. MNRAS, 368, L52
  461. Lefa E., Rieger F.M. & Aharonian F. (2011). Formation of Very Hard Gamma-Ray Spectra of Blazars in Leptonic Models. ApJ, 740, 64
  462. Asano K., Takahara F., Kusunose M. et al. (2014). Time-dependent Models for Blazar Emission with the Second-order Fermi Acceleration. ApJ, 780, 64
  463. Murase K., Dermer C.D., Takami H. et al. (2012). Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV Gamma-Ray Observations. ApJ, 749, 63
  464. Biteau J. & Giebels B. (2012). The minijets-in-a-jet statistical model and the rms-flux correlation. A&A, 548, A123 References
  465. McHardy I. (2011). The origin of high energy variability in blazars. PoS(AGN 2011)017. Proc. of the "AGN Physics in the CTA Era" workshop, Toulouse, France
  466. Marscher A.P. (2014). Turbulent, extreme multi-zone model for simulating flux and polarization variability in blazars. ApJ, 780, 87
  467. de Gouveia Dal Pino E.M., Piovezan P.P. & Kadowaki L.H.S. (2010). The role of magnetic reconnection on jet/accretion disk systems. A&A, 518, A5
  468. Giannios D. (2013). Reconnection-driven plasmoids in blazars: fast flares on a slow envelope. MNRAS, 431, 355
  469. Kadowaki L.H.S., de Gouveia Dal Pino E.M. & Singh C.B. (2015). The Role of Fast Magnetic Reconnection on the Radio and Gamma-ray Emission from the Nuclear Regions of Microquasars and Low Luminosity AGNs. ApJ, 802, 113
  470. Singh C.B., de Gouveia Dal Pino E.M. & Kadowaki L.H.S. (2015). On the Role of Fast Magnetic Reconnection in Accreting Black Hole Sources. ApJ, 799, L20
  471. Khiali B., de Gouveia Dal Pino E.M. & Sol H. (2015). Particle Acceleration and gamma-ray emission due to magnetic reconnection around the core region of radio galaxies. arXiv:1504.07592
  472. Osmanov Z. (2010). On the simultaneous generation of high energy emission and submillimeter/infrared radiation from active galactic nuclei. ApJ, 721, 318
  473. Levinson A. & Rieger F.M. (2011). Variable TeV emission as a manifestation of jet formation in M87?. ApJ, 730, 123
  474. Aleksić J., Antonelli L.A., Antoranz P. et al. (2014). Rapid and multiband variability of the TeV bright active nucleus of the galaxy IC 310. A&A, 563, A91
  475. Khiali B., de Gouveia Dal Pino E.M. & del Valle M.V. (2015). A magnetic reconnection model for explaining the multiwavelength emission of the microquasars Cyg X-1 and Cyg X-3. MNRAS, 449, 34
  476. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Gamma-Ray Imaging of a Radio Galaxy. Science, 328, 725
  477. Ackermann M., Ajello M., Baldini L. et al. (2016). Fermi Large Area Telescope Detection of Extended Gamma-Ray Emission from the Radio Galaxy Fornax A. ApJ, 826, 1
  478. Acciari V.A., Aliu E., Arlen T. et al. (2009). Radio Imaging of the Very-High-Energy γ-Ray Emission Region in the Central Engine of a Radio Galaxy . Science, 325, 444
  479. Cheung C.C., Harris D.E. & Stawarz L. (2007). Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission. ApJ, 663, L65
  480. Abdo A.A., Ackermann M., Ajello M. et al. (2010). Fermi Large Area Telescope View of the Core of the Radio Galaxy Centaurus A. ApJ, 719, 1433
  481. Sahakyan N., Yang R., Aharonian F.A. et al. (2013). Evidence for a Second Component in the High-energy Core Emission from Centaurus A?. ApJ, 770, L6
  482. Brown A.M., B Å'hm C., Graham J. et al. (2017). Discovery of a new extragalactic population of energetic particles. Phys. Rev. D, 95, 6, 063018
  483. Sahu S., Zhang B. & Fraija N. (2012). Hadronic-origin TeV gamma-rays and ultrahigh energy cosmic rays from Centaurus A. Phys. Rev. D, 85, 4, 043012
  484. Petropoulou M., Lefa E., Dimitrakoudis S. et al. (2014). One-zone synchrotron self-Compton model for the core emission of Centaurus A revisited. A&A, 562, A12
  485. Cerruti M., Zech A., Emery G. et al. (2016). Hadronic modeling of TeV AGN: gammas and neutrinos. arXiv:1610.00255
  486. Abdo A., Ackermann M., Ajello M. et al. (2009). Radio-Loud Narrow-Line Seyfert 1 as a New Class of Gamma-Ray Active Galactic Nuclei. ApJ, 707, L142
  487. D'Ammando F., Orienti M., Finke J. et al. (2012). SBS 0846+513: a new γ-ray-emitting narrow-line Seyfert 1 galaxy. MNRAS, 426, 317
  488. Foschini L. et al. (2011). The July 2010 outburst of the NLS1 PMN J0948+0022. proc. of the 3rd Fermi symposium, Rome, Italy. Astro- ph/1110.5649
  489. D'Ammando F., Tosti G., Orienti M. et al. (2013). Four Years of Fermi LAT Observations of Narrow-Line Seyfert 1 Galaxies. arXiv:1303.3030
  490. Marconi A. et al. (2008). Weighing black holes from zero to high redshift. ApJ, 678, 693
  491. Calderone G., Ghisellini G., Colpi M. et al. (2013). Black hole mass estimate for a sample of radio-loud narrow-line seyfert 1 galaxies. MNRAS, 431, 210
  492. Neronov A. & Aharonian F.A. (2007). Production of TeV Gamma Radiation in the Vicinity of the Supermassive Black Hole in the Giant Radio Galaxy M87 . ApJ, 671, 85
  493. Rieger F.M. & Aharonian F.A. (2008). Variable VHE gamma-ray emission from non-blazar AGNs. A&A, 479, L5
  494. Istomin Y.N. & Sol H. (2009). Acceleration of particles in the vicinity of a massive black hole. Ap&SS, 321, 57
  495. Biteau J. & Williams D.A. (2015). The Extragalactic Background Light, the Hubble Constant, and Anomalies: Conclusions from 20 Years of TeV Gamma-ray Observations. ApJ, 812, 60
  496. Domínguez A. & Prada F. (2013). Measurement of the Expansion Rate of the Universe from γ-Ray Attenuation. ApJ, 771, L34
  497. Widrow L.M. (2002). Origin of galactic and extragalactic magnetic fields. Reviews of Modern Physics, 74, 775
  498. Kulsrud R.M. & Zweibel E.G. (2008). On the origin of cosmic magnetic fields. Rep. Prog. Phys., 71, 4, 046901
  499. Kandus A., Kunze K.E. & Tsagas C.G. (2011). Primordial magnetogenesis. Phys. Rep., 505, 1, 1
  500. Widrow L.M., Ryu D., Schleicher D.R.G. et al. (2012). The first magnetic fields. Space Sci. Rev., 166, 37
  501. Ryu D., Schleicher D.R.G., Treumann R.A. et al. (2012). Magnetic Fields in the Large-Scale Structure of the Universe. Space Sci. Rev, 166, 1
  502. Kim K.T., Kronberg P.P., Giovannini G. et al. (1989). Discovery of intergalactic radio emission in the Coma-A1367 supercluster . Nature, 341, 720
  503. Elyiv A., Neronov A. & Semikoz D.V. (2009). Gamma-ray induced cascades and magnetic fields in the intergalactic medium. Phys. Rev. D, 80, 2, 023010
  504. Dermer C.D., Cavadini M., Razzaque S. et al. (2011). Time Delay of Cascade Radiation for TeV Blazars and the Measurement of the Intergalactic Magnetic Field. ApJ, 733, L21
  505. Chen W., Buckley J.H. & Ferrer F. (2015). Search for GeV γ -Ray Pair Halos Around Low Redshift Blazars. Physical Review Letters, 115, 21, 211103
  506. Barkov M.V., Aharonian F.A., Bogovalov S.V. et al. (2012). Rapid TeV Variability in Blazars as a Result of Jet-Star Interaction. ApJ, 749, 119
  507. Essey W. & Kusenko A. (2010). A new interpretation of the gamma-ray observations of distant active galactic nuclei. Astroparticle Physics, 33, 81
  508. Essey W., Kalashev O., Kusenko A. et al. (2011). Role of line-of-sight cosmic-ray interactions in forming the spectra of distant blazars in tev gamma rays and high-energy neutrinos. ApJ, 731, 51
  509. Takami H., Murase K. & Dermer C.D. (2013). Disentangling Hadronic and Leptonic Cascade Scenarios from the Very-high-energy Gamma- Ray Emission of Distant Hard-spectrum Blazars. ApJ, 771, L32
  510. Abdo A.A., Ackermann M., Ajello M. et al. (2011). Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution. ApJ, 736, 131
  511. Joshi J.C. & Gupta N. (2013). Testing hadronic models of gamma ray production at the core of Cen A. Phys. Rev. D, 87, 2, 023002
  512. Rieger F.M. & Aharonian F.A. (2009). Centaurus A as TeV gamma-ray and possible UHE cosmic-ray source. A&A, 506, L41
  513. Yang R., Sahakyan N., de Ona Wilhelmi E. et al. (2012). Deep observation of the giant radio lobes of Centaurus A with the Fermi Large Area Telescope. A&A, 542, 19
  514. de Angelis A., Roncadelli M. & Mansutti O. (2007). Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?. Phys. Rev. D, 76, 12, 121301
  515. Simet M., Hooper D. & Serpico P.D. (2008). Milky way as a kiloparsec-scale axionscope. Phys. Rev. D, 77, 6, 063001
  516. S ánchez-Conde M.A., Paneque D., Bloom E. et al. (2009). Hints of the existence of axionlike particles from the gamma-ray spectra of cosmological sources. Phys. Rev. D, 79, 12, 123511
  517. de Angelis A., Mansutti O., Persic M. et al. (2009). Photon propagation and the very high energy γ-ray spectra of blazars: how transparent is the Universe?. MNRAS, 394, L21
  518. de Angelis A., Galanti G. & Roncadelli M. (2011). Relevance of axionlike particles for very-high-energy astrophysics. Phys. Rev. D, 84, 10, 105030
  519. Domínguez A., S ánchez-Conde M.A. & Prada F. (2011). Axion-like particle imprint in cosmological very-high-energy sources. J. Cosmology Astropart. Phys., 11, 020
  520. De Angelis A., Galanti G. & Roncadelli M. (2013). Transparency of the Universe to gamma-rays. MNRAS, 432, 3245
  521. Galanti G., Roncadelli M., De Angelis A. et al. (2015). Axion-like particles explain the unphysical redshift-dependence of AGN gamma-ray spectra. arXiv:1503.04436
  522. Horns D. & Meyer M. (2012). Indications for a pair-production anomaly from the propagation of VHE gamma-rays. J. Cosmology Astropart. Phys., 2, 33
  523. Horns D. & Meyer M. (2013). Pair-production opacity at high and very-high gamma-ray energies. DESY-PROC-2013-04. Astro-ph/1309.3846
  524. Rubtsov G.I. & Troitsky S.V. (2014). Breaks in gamma-ray spectra of distant blazars and transparency of the universe. Soviet Journal of Experimental and Theoretical Physics Letters, 100, 355
  525. Sanchez D.A., Fegan S. & Giebels B. (2013). Evidence for a cosmological effect in gamma-ray spectra of BL Lacs. Astron. Astrophys., 554, A75
  526. Domínguez A. & Ajello M. (2015). Spectral Analysis of Fermi-LAT Blazars above 50 GeV . ApJ, 813, L34
  527. Horns D., Maccione L., Meyer M. et al. (2012). Hardening of TeV gamma spectrum of active galactic nuclei in galaxy clusters by conversions of photons into axionlike particles. Phys. Rev. D, 86, 7, 075024
  528. Meyer M., Montanino D. & Conrad J. (2014). On detecting oscillations of gamma rays into axion-like particles in turbulent and coherent magnetic fields. JCAP, 9, 3, 003
  529. Tavecchio F., Roncadelli M. & Galanti G. (2015). Photons to axion-like particles conversion in active galactic nuclei. Physics Letters B, 744, 375
  530. Tavecchio F., Roncadelli M., Galanti G. et al. (2012). Evidence for an axion-like particle from pks 1222+216?. Phys. Rev. D, 86, 8, 085036
  531. Meyer M. & Conrad J. (2014). Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities. J. Cosmology Astropart. Phys., 12, 016
  532. Abramowski A., Acero F., Aharonian F. et al. (2013). Constraints on axionlike particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum. Phys. Rev. D, 88, 10, 102003
  533. Ajello M., Albert A., Anderson B. et al. (2016). Search for Spectral Irregularities due to Photon-Axionlike-Particle Oscillations with the Fermi Large Area Telescope. Physical Review Letters, 116, 16, 161101
  534. Abdo A.A., Ackermann M., Ajello M. et al. (2009). A limit on the variation of the speed of light arising from quantum gravity effects. Nature, 462, 331
  535. H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2011). Search for Lorentz Invariance breaking with a likelihood fit of the PKS 2155-304 flare data taken on MJD 53944. Astroparticle Physics, 34, 738
  536. Kifune T. (1999). Invariance violation extends the cosmic ray horizon?. ApJ, 518, L21
  537. Fairbairn M., Nilsson A., Ellis J. et al. (2014). The CTA sensitivity to Lorentz-violating effects on the gamma-ray horizon. J. Cosmology Astropart. Phys., 6, 005
  538. D'Ammando F., Orienti M., Larsson J. et al. (2015). The first γ-ray detection of the narrow-line Seyfert 1 FBQS J1644+2619. MNRAS, 452, 520
  539. D'Ammando F., Orienti M., Finke J. et al. (2016). A Panchromatic View of Relativistic Jets in Narrow-Line Seyfert 1 Galaxies. Galaxies, 4, 11
  540. MAGIC Collaboration, Albert J., Aliu E. et al. (2008). Very-High-Energy gamma rays from a Distant Quasar: How Transparent Is the Universe?. Science, 320, 1752
  541. Ackermann M. et al. (2013). The First FERMI-LAT Catalog of sources above 10 GeV . ApJS, 209, 34
  542. Shaw M.S., Romani R.W., Cotter G. et al. (2013). Spectroscopy of the Largest Ever γ-Ray-selected BL Lac Sample. ApJ, 764, 135
  543. Pita A., Goldoni P., Boisson C. et al. (2014). Spectroscopy of high-energy bl lacertae objects with x-shooter on the vlt. A&A, 565, A12
  544. H.E.S.S. Collaboration, Abramowski A., Acero F. et al. (2012). A multiwavelength view of the flaring state of PKS 2155-304 in 2006. A&A, 539, A149
  545. Marscher A.P., Jorstad S.G., D'Arcangelo F.D. et al. (2008). The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature, 452, 966
  546. Marscher A.P., Jorstad S.G., Larionov V.M. et al. (2010). Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-Waveband Monitoring During Strong Gamma-Ray Activity. ApJ, 710, L126
  547. Blinov D., Pavlidou V., Papadakis I. et al. (2016). RoboPol: do optical polarization rotations occur in all blazars?. MNRAS, 462, 1775
  548. Meyer M., Conrad J. & Dickinson H. (2016). Sensitivity of the Cherenkov Telescope Array to the Detection of Intergalactic Magnetic Fields. ApJ, 827, 147
  549. Pinzke A. & Pfrommer C. (2010). Simulating the γ-ray emission from galaxy clusters: a universal cosmic ray spectrum and spatial distribution. MNRAS, 409, 449
  550. Zandanel F., Pfrommer C. & Prada F. (2014). On the physics of radio haloes in galaxy clusters: scaling relations and luminosity functions. MNRAS, 438, 124
  551. Ahnen M.L., Ansoldi S., Antonelli L.A. et al. (2016). Deep observation of the NGC 1275 region with MAGIC: search of diffuse γ-ray emission from cosmic rays in the Perseus cluster . A&A, 589, A33
  552. Brunetti G., Venturi T., Dallacasa D. et al. (2007). Cosmic Rays and Radio Halos in Galaxy Clusters: New Constraints from Radio Observations. ApJl, 670, L5
  553. Ackermann M., Ajello M., Albert A. et al. (2014). Search for Cosmic-Ray-induced Gamma-Ray Emission in Galaxy Clusters. ApJ, 787, 18
  554. Voit G.M. (2005). Tracing cosmic evolution with clusters of galaxies. Reviews of Modern Physics, 77, 207
  555. Forman W., Churazov E., David L. et al. (2003). A High Angular Resolution View of Hot Gas in Clusters, Groups, and Galaxies. arXiv:0301476
  556. Miniati F. & Beresnyak A. (2015). Self-similar energetics in large clusters of galaxies. Nature, 523, 59
  557. Brunetti G. & Jones T.W. (2014). Cosmic Rays in Galaxy Clusters and Their Nonthermal Emission. International Journal of Modern Physics D, 23, 1430007
  558. Feretti L., Giovannini G., Govoni F. et al. (2012). Clusters of galaxies: observational properties of the diffuse radio emission. A&A Rev., 20, 54
  559. Berezinsky V.S., Blasi P. & Ptuskin V.S. (1997). Clusters of Galaxies as Storage Room for Cosmic Rays. ApJ, 487, 529
  560. Blasi P. & Colafrancesco S. (1999). Cosmic rays, radio halos and nonthermal X-ray emission in clusters of galaxies. Astroparticle Physics, 12, 169
  561. Pfrommer C., Enßlin T.A. & Springel V. (2008). Simulating cosmic rays in clusters of galaxies -II. A unified scheme for radio haloes and relics with predictions of the γ-ray emission. MNRAS, 385, 1211
  562. Blasi P. (2001). The non-thermal radiation-cluster merger connection. Astroparticle Physics, 15, 223
  563. Inoue S., Aharonian F.A. & Sugiyama N. (2005). Hard X-Ray and Gamma-Ray Emission Induced by Ultra-High-Energy Protons in Cluster Accretion Shocks. ApJl, 628, L9
  564. Vannoni G., Aharonian F.A., Gabici S. et al. (2011). Acceleration and radiation of ultra-high energy protons in galaxy clusters. A&A, 536, A56
  565. Armengaud E., Sigl G. & Miniati F. (2006). Secondary gamma rays from ultrahigh energy cosmic rays produced in magnetized environments. Physics Review D, 73, 8, 083008
  566. Kotera K., Allard D., Murase K. et al. (2009). Propagation of Ultrahigh Energy Nuclei in Clusters of Galaxies: Resulting Composition and Secondary Emissions. ApJ, 707, 370
  567. Kelner S.R. & Aharonian F.A. (2008). Energy spectra of gamma rays, electrons, and neutrinos produced at interactions of relativistic protons with low energy radiation. Physics Review D, 78, 3, 034013
  568. Croston J.H., Pratt G.W., B öhringer H. et al. (2008). Galaxy-cluster gas-density distributions of the representative XMM-Newton cluster structure survey (REXCESS). A&A, 487, 431
  569. Brunetti G., Blasi P., Reimer O. et al. (2012). Probing the origin of giant radio haloes through radio and γ-ray data: the case of the Coma cluster . MNRAS, 426, 956
  570. Pinzke A., Oh S.P. & Pfrommer C. (2016). Turbulence and Particle Acceleration in Giant Radio Haloes: the Origin of Seed Electrons. arXiv:1611.07533
  571. ZuHone J.A., Markevitch M., Brunetti G. et al. (2013). Turbulence and Radio Mini-halos in the Sloshing Cores of Galaxy Clusters. ApJ, 762, 78
  572. Jacob S. & Pfrommer C. (2016). Cosmic ray heating in cool core clusters II: Self-regulation cycle and non-thermal emission. arXiv:1609.06322
  573. Storm E.M., Jeltema T.E. & Profumo S. (2012). Gamma Rays from Star Formation in Clusters of Galaxies. ApJ, 755, 117
  574. Persic M. & Rephaeli Y. (2012). Cosmic rays in star-forming galaxies. Journal of Physics Conference Series, 355, 1, 012038
  575. Aleksić J., Antonelli L.A., Antoranz P. et al. (2010). MAGIC Gamma-ray Telescope Observation of the Perseus Cluster of Galaxies: Implications for Cosmic Rays, Dark Matter, and NGC 1275. ApJ, 710, 634
  576. -(2010). Detection of Very High Energy γ-ray Emission from the Perseus Cluster Head-Tail Galaxy IC 310 by the MAGIC Telescopes. ApJL, 723, L207
  577. Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Detection of very-high energy γ-ray emission from NGC 1275 by the MAGIC telescopes. A&A, 539, L2
  578. Aleksić J., Ansoldi S., Antonelli L.A. et al. (2014). Contemporaneous observations of the radio galaxy NGC 1275 from radio to very high energy γ-rays. A&A, 564, A5
  579. Wouters D. & Brun P. (2013). Constraints on Axion-like Particles from X-Ray Observations of the Hydra Galaxy Cluster . ApJ, 772, 44
  580. Reimer O., Pohl M., Sreekumar P. et al. (2003). EGRET Upper Limits on the High-Energy Gamma-Ray Emission of Galaxy Clusters. ApJ, 588, 155
  581. Ackermann M., Ajello M., Allafort A. et al. (2010). Constraints on dark matter annihilation in clusters of galaxies with the Fermi large area telescope. JCAP, 5, 025
  582. -(2010). GeV Gamma-ray Flux Upper Limits from Clusters of Galaxies. ApJL, 717, L71
  583. Jeltema T.E. & Profumo S. (2011). Implications of Fermi Observations For Hadronic Models of Radio Halos in Clusters of Galaxies. ApJ, 728, 53
  584. Han J., Frenk C.S., Eke V.R. et al. (2012). Constraining extended gamma-ray emission from galaxy clusters. MNRAS, 427, 1651
  585. Ando S. & Nagai D. (2012). Fermi-LAT constraints on dark matter annihilation cross section from observations of the Fornax cluster . JCAP, 7, 017
  586. Huber B., Tchernin C., Eckert D. et al. (2013). Probing the cosmic-ray content of galaxy clusters by stacking Fermi-LAT count maps. A&A, 560, A64
  587. Zandanel F. & Ando S. (2014). Constraints on diffuse gamma-ray emission from structure formation processes in the Coma cluster . MNRAS, 440, 663
  588. Prokhorov D.A. & Churazov E.M. (2014). Counting gamma rays in the directions of galaxy clusters. A&A, 567, A93
  589. Vazza F. & Br üggen M. (2014). Do radio relics challenge diffusive shock acceleration?. MNRAS, 437, 2291
  590. Griffin R.D., Dai X. & Kochanek C.S. (2014). New Limits on Gamma-Ray Emission from Galaxy Clusters. ApJL, 795, L21
  591. Selig M., Vacca V., Oppermann N. et al. (2015). The denoised, deconvolved, and decomposed Fermi γ-ray sky. An application of the D 3 PO algorithm. A&A, 581, A126
  592. Vazza F., Eckert D., Br üggen M. et al. (2015). Electron and proton acceleration efficiency by merger shocks in galaxy clusters. MNRAS, 451, 2198
  593. Ackermann M., Ajello M., Albert A. et al. (2016). Search for Gamma-Ray Emission from the Coma Cluster with Six Years of Fermi-LAT Data. ApJ, 819, 149
  594. -(2015). Search for Extended Gamma-Ray Emission from the Virgo Galaxy Cluster with FERMI-LAT . ApJ, 812, 159
  595. Perkins J.S., Badran H.M., Blaylock G. et al. (2006). TeV Gamma-Ray Observations of the Perseus and Abell 2029 Galaxy Clusters. ApJ, 644, 148
  596. Perkins J.S. (2008). VERITAS Observations of the Coma Cluster of Galaxies. In F.A. Aharonian, W. Hofmann & F. Rieger (editors), American Institute of Physics Conference Series, volume 1085 of American Institute of Physics Conference Series, pp. 569-572
  597. Aharonian F., Akhperjanian A.G., Anton G. et al. (2009). Very high energy gamma-ray observations of the galaxy clusters Abell 496 and Abell 85 with HESS. A&A, 495, 27
  598. Domainko W., Nedbal D., Hinton J.A. et al. (2009). New Results from H.E.S.S. Observations of Galaxy Clusters. International Journal of Modern Physics D, 18, 1627
  599. Galante N. & for the VERITAS Collaboration (2009). Observation of Radio Galaxies and Clusters of Galaxies with VERITAS. arXiv:0907.5000
  600. Kiuchi R., Mori M., Bicknell G.V. et al. (2009). CANGAROO-III Search for TeV Gamma Rays from Two Clusters of Galaxies. ApJ, 704, 240
  601. Acciari V.A., Aliu E., Arlen T. et al. (2009). VERITAS Upper Limit on the Very High Energy Emission from the Radio Galaxy NGC 1275. ApJL, 706, L275
  602. Aleksić J., Alvarez E.A., Antonelli L.A. et al. (2012). Constraining cosmic rays and magnetic fields in the Perseus galaxy cluster with TeV observations by the MAGIC telescopes. A&A, 541, A99
  603. Arlen T., Aune T., Beilicke M. et al. (2012). Constraints on Cosmic Rays, Magnetic Fields, and Dark Matter from Gamma-Ray Observations of the Coma Cluster of Galaxies with VERITAS and Fermi. ApJ, 757, 123
  604. Abramowski A., Acero F., Aharonian F. et al. (2012). Constraints on the gamma-ray emission from the cluster-scale AGN outburst in the Hydra A galaxy cluster . A&A, 545, A103
  605. Ando S. & Nagai D. (2008). Gamma-ray probe of cosmic ray pressure in galaxy clusters and cosmological implications. MNRAS, 385, 2243
  606. Churazov E., Forman W., Jones C. et al. (2003). XMM-Newton Observations of the Perseus Cluster. I. The Temperature and Surface Brightness Structure. ApJ, 590, 225
  607. Pedlar A., Ghataure H.S., Davies R.D. et al. (1990). The Radio Structure of NGC1275. MNRAS, 246, 477
  608. Gitti M., Brunetti G. & Setti G. (2002). Modeling the interaction between ICM and relativistic plasma in cooling flows: The case of the Perseus cluster . A&A, 386, 456
  609. Charles E., S ánchez-Conde M., Anderson B. et al. (2016). Sensitivity projections for dark matter searches with the Fermi large area telescope. Phys. Rep., 636, 1
  610. Reiprich T.H. & B öhringer H. (2002). The Mass Function of an X-Ray Flux-limited Sample of Galaxy Clusters. ApJ, 567, 716
  611. Vazza F., Br üggen M., Wittor D. et al. (2016). Constraining the efficiency of cosmic ray acceleration by cluster shocks. MNRAS, 459, 70
  612. Kushnir D. & Waxman E. (2009). Nonthermal emission from clusters of galaxies. JCAP, 8, 002
  613. Bonafede A., Feretti L., Murgia M. et al. (2010). The Coma cluster magnetic field from Faraday rotation measures. A&A, 513, A30+
  614. Bonafede A., Vazza F., Br üggen M. et al. (2013). Measurements and simulation of Faraday rotation across the Coma radio relic. MNRAS, 433, 3208
  615. R öttgering H., Afonso J., Barthel P. et al. (2011). LOFAR and APERTIF Surveys of the Radio Sky: Probing Shocks and Magnetic Fields in Galaxy Clusters. Journal of Astrophysics and Astronomy, 32, 557
  616. Govoni F., Murgia M., Xu H. et al. (2013). Polarization of cluster radio halos with upcoming radio interferometers. A&A, 554, A102
  617. Bonafede A., Vazza F., Br üggen M. et al. (2015). Unravelling the origin of large-scale magnetic fields in galaxy clusters and beyond through Faraday Rotation Measures with the SKA. Advancing Astrophysics with the Square Kilometre Array (AASKA14), 95
  618. Enßlin T., Pfrommer C., Miniati F. et al. (2011). Cosmic ray transport in galaxy clusters: implications for radio halos, gamma-ray signatures, and cool core heating. A&A, 527, A99+
  619. Wiener J., Oh S.P. & Guo F. (2013). Cosmic ray streaming in clusters of galaxies. MNRAS, 434, 2209
  620. Govoni F. & Feretti L. (2004). Magnetic Fields in Clusters of Galaxies. International Journal of Modern Physics D, 13, 1549
  621. Clarke T.E. (2004). Faraday Rotation Observations of Magnetic Fields in Galaxy Clusters. Journal of Korean Astronomical Society, 37, 337
  622. Enßlin T.A. & Vogt C. (2006). Magnetic turbulence in cool cores of galaxy clusters. A&A, 453, 447
  623. Kuchar P. & Enßlin T.A. (2011). Magnetic power spectra from Faraday rotation maps. REALMAF and its use on Hydra A. A&A, 529, A13+
  624. Domínguez A., Primack J.R., Rosario D.J. et al. (2011). Extragalactic background light inferred from AEGIS galaxy-SED-type fractions. MNRAS, 410, 2556
  625. Sijbring L.G. (1993). A Radio Continuum and HI Line Study of the Perseus Cluster . Ph.D. thesis, Groningen University
  626. Juliusson E., Meyer P. & M üller D. (1972). Composition of Cosmic-Ray Nuclei at High Energies. Physical Review Letters, 29, 7, 445
  627. Garcia-Munoz M., Mason G.M. & Simpson J.A. (1975). The isotopic composition of galactic cosmic-ray lithium, beryllium, and boron. The Astrophysical Journal, 201, L145
  628. 2013). KASCADE-Grande measurements of energy spectra for elemental groups of cosmic rays. Astroparticle Physics, 47, 54
  629. Kieda D., Swordy S. & Wakely S. (2001). A high resolution method for measuring cosmic ray composition beyond 10 TeV . Astroparticle Physics, 15, 3, 287
  630. Aharonian F., Akhperjanian A., Bazer-Bachi A. et al. (2007). First ground-based measurement of atmospheric Cherenkov light from cosmic rays. Physical Review D, 75, 4, 042004
  631. Wissel S.A. (2010). Observations of direct Cerenkov light in ground-based telescopes and the flux of iron nuclei at TeV energies. ProQuest Dissertations And Theses; Thesis (Ph.D.)-The University of Chicago
  632. Aharonian F.A., Atoyan A.M. & Voelk H.J. (1995). High energy electrons and positrons in cosmic rays as an indicator of the existence of a nearby cosmic tevatron. A&A, 294, L41
  633. Kobayashi T., Komori Y., Yoshida K. et al. (2004). The Most Likely Sources of High-Energy Cosmic-Ray Electrons in Supernova Remnants. ApJ, 601, 340
  634. Abdo A.A., Ackermann M., Ajello M. et al. (2009). Measurement of the Cosmic Ray e + +e -Spectrum from 20GeV to 1TeV with the Fermi Large Area Telescope. Physical Review Letters, 102, 18, 181101
  635. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. (2011). Cosmic-Ray Electron Flux Measured by the PAMELA Experiment between 1 and 625 GeV . Physical Review Letters, 106, 20, 201101
  636. Aguilar M., Aisa D., Alvino A. et al. (2014). Electron and Positron Fluxes in Primary Cosmic Rays Measured with the Alpha Magnetic Spectrometer on the International Space Station. Physical Review Letters, 113, 12, 121102
  637. Abdollahi S., Ackermann M., Ajello M. et al. (2017). Cosmic-ray electron-positron spectrum from 7 gev to 2 tev with the fermi large area telescope. Phys. Rev. D, 95, 082007
  638. Malyshev D., Cholis I. & Gelfand J. (2009). Pulsars versus dark matter interpretation of ATIC/PAMELA. Phys. Rev. D, 80, 6, 063005
  639. Adriani O., Barbarino G.C., Bazilevskaya G.A. et al. (2009). An anomalous positron abundance in cosmic rays with energies 1.5-100GeV . Nature, 458, 607
  640. Aguilar M., Alberti G., Alpat B. et al. (2013). First Result from the Alpha Magnetic Spectrometer on the International Space Station: Precision Measurement of the Positron Fraction in Primary Cosmic Rays of 0.5-350 GeV . Physical Review Letters, 110, 14, 141102
  641. Borla Tridon D. (2011). Measurement of the cosmic electron spectrum with the MAGIC telescopes. International Cosmic Ray Conference, 6, 47
  642. Staszak D. & for the VERITAS Collaboration (2015). A Cosmic-ray Electron Spectrum with VERITAS. proc. 34th ICRC The Hague, Netherlands
  643. Parsons R.D. (2011). Towards a Measurement of the Cosmic Ray Electron Spectrum at the Highest Energies, using the Next-Generation Cherenkov Array CTA. Ph.D. thesis, University of Leeds
  644. Gaug M., Berge D., Daniel M. et al. (2014). Calibration strategies for the Cherenkov Telescope Array. In Observatory Operations: Strategies, Processes, and Systems V , volume 9149 of Proc. SPIE, p. 914919
  645. Parsons R.D., Hinton J.A. & Schoorlemmer H. (2016). Calibration of the Cherenkov telescope array using cosmic ray electrons. Astroparticle Physics, 84, 23
  646. d'Enterria D., Engel R., Pierog T. et al. (2011). Constraints from the first LHC data on hadronic event generators for ultra-high energy cosmic- ray physics. Astroparticle Physics, 35, 98
  647. Marrocchesi P.S. (2015). CALET: a high energy astroparticle physics experiment on the ISS. arXiv:1512.08059
  648. Brown R.H. (1974). The intensity interferometer: Its application to astronomy, (Halsted Press)
  649. Tuthill P.G. (2014). The narrabri stellar intensity interferometer: a 50th birthday tribute. volume 9146, pp. 91460C-91460C-7
  650. Le Bohec S. & Holder J. (2006). Optical Intensity Interferometry with Atmospheric Cerenkov Telescope Arrays. ApJ, 649, 399
  651. Dravins D. & LeBohec S. (2008). Toward a diffraction-limited square-kilometer optical telescope: digital revival of intensity interferometry. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 6986 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series
  652. Nu ñez P.D., Holmes R., Kieda D. et al. (2012). High angular resolution imaging with stellar intensity interferometry using air Cherenkov telescope arrays. MNRAS, 419, 172
  653. Dravins D. & Lagadec T. (2014). Stellar intensity interferometry over kilometer baselines: laboratory simulation of observations with the Cherenkov Telescope Array . In Optical and Infrared Interferometry IV , volume 9146 of Proc. SPIE, p. 91460Z
  654. Lacki B.C. (2014). On the use of Cherenkov Telescopes for outer Solar system body occultations. MNRAS, 445, 1858
  655. Hanna D.S., Ball J., Covault C.E. et al. (2009). OSETI with STACEE: A Search for Nanosecond Optical Transients from Nearby Stars. Astrobiology, 9, 345
  656. Abeysekara A.U., Archambault S., Archer A. et al. (2016). A Search for Brief Optical Flashes Associated with the SETI Target KIC 8462852. ApJ, 818, L33
  657. Heck D., Knapp J., Capdevielle J. et al.. Corsika a monte-carlo code to simulate extensive air showers. Report FZKA 6019 (1998), Forschungszentrum Karlsruhe; https://web.ikp.kit.edu/corsika/physics_description/corsika_phys.pdf
  658. Bernl öhr K. (2008). Simulation of imaging atmospheric Cherenkov telescopes with CORSIKA and sim telarray. Astroparticle Physics, 30, 149
  659. Hassan T., Arrabito L., Bernl ör K. et al. (2015). Second large-scale Monte Carlo study for the Cherenkov Telescope Array. arXiv:1508.06075