Academia.eduAcademia.edu

Outline

Scaling in Ordered and Critical Random Boolean Networks

2003, Physical Review Letters

https://doi.org/10.1103/PHYSREVLETT.90.068702

Abstract
sparkles

AI

Random Boolean networks (RBNs) serve as models for complex systems, particularly those in biological contexts such as genetic regulatory networks. This analysis determines the scaling behavior of relevant nodes and attractors in RBNs, specifically in ordered and critical regimes. It is shown that in the ordered state, the average number of relevant nodes remains constant as network size (N) increases, while in critical networks the number of relevant nodes scales as N^1/3, alongside a median growth in attractor numbers that surpasses linearity with N. These findings enhance understanding of dynamical properties that are essential for real-world biological systems.

References (12)

  1. S. A. Kauffman, J. Theor. Bio. 22, 437 (1969).
  2. S. A. Kauffman, Origins of Order (Oxford University Press, Oxford, 1993).
  3. M. Aldana, S. Coppersmith, and L. P. Kadanoff, http://arXiv.org/abs/nlin.AO/0204062 (2002).
  4. U. Bastolla and G. Parisi, Physica D 115, 203 (1998).
  5. S. Bilke and F. Sjunnesson, Phys. Rev. E 65, 016129 (2001).
  6. H. Flyvbjerg and N. J. Kjaer, J. Phys. A 21, 1695 (1988).
  7. B. Derrida and H. Flyvbjerg, J. Phys. A 20, L1107 (1987).
  8. B. Derrida and Y. Pomeau, Europhys. Lett. 1, 45 (1986).
  9. B. Derrida and G. Weisbuch, J. Phys. 47, 1297 (1986).
  10. H. Flyvbjerg, J. Phys. A 21, L955 (1988).
  11. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev. E 64, 026118 (2001).
  12. See J. F. Lynch, Random Struct. Algor 6, 239 (1995) and http://arXiv.org/abs/adap-org/9305001 (1993) for related results on cycle lengths.