Academia.eduAcademia.edu

Outline

On modal logics of model-theoretic relations

2018, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1804.09810

Abstract

Given a class C of models, a binary relation R between models, and a model-theoretic language L, we consider the modal logic and the modal algebra of the theory of C in L where the modal operator is interpreted via R. We discuss how modal theories of C and R depend on the model-theoretic language, their Kripke completeness, and expressibility of the modality inside L. We calculate such theories for the submodel and the quotient relations. We prove a downward Löwenheim-Skolem theorem for first-order language expanded with the modal operator for the extension relation between models.

References (36)

  1. Artemov, Sergei N., and Lev D. Beklemishev, 'Provability logic', in Handbook of Philosophical Logic, 2nd ed, Kluwer, 2004, pp. 229-403.
  2. Barwise, Jon, and Solomon Feferman, Model-theoretic logics, Per- spectives in mathematical logic, Springer-Verlag, 1985.
  3. Barwise, Jon, and Johan van Benthem, 'Interpolation, preserva- tion, and pebble games', Journal of Symbolic Logic, 64 (1999), 2, 881- 903.
  4. Benerecetti, Massimo, Fabio Mogavero, and Aniello Murano, 'Substructure temporal logic', in Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 368-377.
  5. Berarducci, Alessandro, 'The interpretability logic of Peano arith- metic', Journal of Symbolic Logic, 55 (1990), 3, 1059-1089.
  6. Blackburn, Patrick, Maarten de Rijke, and Yde Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Sci- ence, Cambridge University Press, 2002.
  7. Block, Alexander C., and Benedikt Löwe, 'Modal logics and multiverses', RIMS Kokyuroku, 1949 (2015), 5-23.
  8. Buss, Samuel R., 'The modal logic of pure provability.', Notre Dame J. Formal Logic, 31 (1990), 2, 225-231.
  9. Chagrov, Alexander, and Michael Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, 1997.
  10. Chang, C.C., and H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, Elsevier Science, 1990.
  11. D'agostino, Giovanna, and Marco Hollenberg, 'Logical ques- tions concerning the µ-calculus: Interpolation, Lyndon and Loś-Tarski', Journal of Symbolic Logic, 65 (2000), 1, 310-332.
  12. Fine, Benjamin, Anthony Gaglione, Alexei Myasnikov, Ger- hard Rosenberger, and Dennis Spellman, The Elementary The- ory of Groups, digital original edn., Expositions in Mathematics, De Gruyter, 2014.
  13. Goldblatt, Robert, 'Diodorean modality in Minkowski spacetime', Studia Logica: An International Journal for Symbolic Logic, 39 (1980), 219-236.
  14. Goldblatt, Robert, Logics of Time and Computation, 2 edn., no. 7 in CSLI Lecture Notes, Center for the Study of Language and Informa- tion, 1992.
  15. Hamkins, Joel David, 'A simple maximality principle', Journal of Symbolic Logic, 68 (2003), 2, 527-550.
  16. Hamkins, Joel David, 'The modal logic of arithmetic potentialism and the universal algorithm', ArXiv e-prints, (2018), 1-35.
  17. Hamkins, Joel David, George Leibman, and Benedikt Löwe, 'Structural connections between a forcing class and its modal logic', Israel Journal of Mathematics, 207 (2015), 617-651.
  18. Hamkins, Joel David, and Benedikt Löwe, 'The modal logic of forcing', Transactions of the American Mathematical Society, 360 (2007), 4, 1793-1817.
  19. Henk, Paula, 'Kripke models built from models of arithmetic', in Martin Aher, Daniel Hole, Emil Jeřábek, and Clemens Kupke, (eds.), Logic, Language, and Computation, Springer, Berlin Heidelberg, 2015, pp. 157-174.
  20. Ignatiev, Konstantin N., 'The provability logic for Σ 1 - interpolability', Annals of Pure and Applied Logic, 64 (1993), 1, 1 - 25.
  21. Inamdar, Tanmay, and Benedikt Löwe, 'The modal logic of inner models', The Journal of Symbolic Logic, 81 (2016), 1, 225-236.
  22. Mal'cev, A. I., Algebraic Systems, Die Grundlehren der mathematis- chen Wissenschaften 192, Springer-Verlag Berlin Heidelberg, 1973.
  23. Marker, D., Model Theory : An Introduction, Graduate Texts in Mathematics, Springer New York, 2002.
  24. Rosenstein, Joseph G., Linear Orderings, Academic Press, 1982.
  25. Saveliev, D. I., 'On first-order expressibility of satisfiability in sub- models', in R. Iemhoff et al. (eds.), WoLLIC 2019, Lecture Notes in CS 11541, 2019, pp. 584-593.
  26. Saveliev, Denis I., and Ilya B. Shapirovsky, 'On modal logic of submodels', in 11th Advances in Modal Logic, Short Papers, 2016, pp. 115-119.
  27. Shavrukov, V.Yu., 'The logic of relative interpretability over Peano arithmetic', Tech. Rep. 4, Steklov Mathematical Institute, Moscow, 1988. In Russian.
  28. Shavrukov, V.Yu., Subalgebras of diagonalizable algebras of theories containing arithmetic, Instytut Matematyczny Polskiej Akademi Nauk, 1993.
  29. Shehtman, Valentin, 'Modal logics of domains on the real plane', Studia Logica, 42 (1983), 63-80.
  30. Shehtman, Valentin, 'Modal counterparts of Medvedev logic of fi- nite problems are not finitely axiomatizable', Studia Logica: An Inter- national Journal for Symbolic Logic, 49 (1990), 3, 365-385.
  31. Solovay, Robert M., 'Provability interpretations of modal logic', Israel Journal of Mathematics, 25 (1976), 3, 287-304.
  32. van Benthem, Johan, Logical Dynamics of Information and Interac- tion, Cambridge University Press, New York, NY, USA, 2014.
  33. Veltman, Frank, 'Defaults in update semantics', Journal of Philo- sophical Logic, 25 (1996), 3.
  34. Visser, Albert, 'An overview of interpretability logic', in Mar- cus Kracht, Maarten de Rijke, Heinrich Wansing, and Michael Za- kharyaschev, (eds.), Advances in Modal Logic 1, papers from the first workshop on "Advances in Modal logic," held in Berlin, Germany, 8-10 October 1996., CSLI Publications, 1996, pp. 307-359.
  35. Visser, Albert, 'The interpretability of inconsistency: Feferman's theorem and related results', Logic Group preprint series, 318 (2014).
  36. Westerståhl, Dag, 'Quantifiers in formal and natural languages', in Handbook of Philosophical Logic, 2nd edition, v.14, Springer, 2007, pp. 234-339.