On modal logics of model-theoretic relations
2018, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1804.09810Abstract
Given a class C of models, a binary relation R between models, and a model-theoretic language L, we consider the modal logic and the modal algebra of the theory of C in L where the modal operator is interpreted via R. We discuss how modal theories of C and R depend on the model-theoretic language, their Kripke completeness, and expressibility of the modality inside L. We calculate such theories for the submodel and the quotient relations. We prove a downward Löwenheim-Skolem theorem for first-order language expanded with the modal operator for the extension relation between models.
References (36)
- Artemov, Sergei N., and Lev D. Beklemishev, 'Provability logic', in Handbook of Philosophical Logic, 2nd ed, Kluwer, 2004, pp. 229-403.
- Barwise, Jon, and Solomon Feferman, Model-theoretic logics, Per- spectives in mathematical logic, Springer-Verlag, 1985.
- Barwise, Jon, and Johan van Benthem, 'Interpolation, preserva- tion, and pebble games', Journal of Symbolic Logic, 64 (1999), 2, 881- 903.
- Benerecetti, Massimo, Fabio Mogavero, and Aniello Murano, 'Substructure temporal logic', in Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS '13, IEEE Computer Society, Washington, DC, USA, 2013, pp. 368-377.
- Berarducci, Alessandro, 'The interpretability logic of Peano arith- metic', Journal of Symbolic Logic, 55 (1990), 3, 1059-1089.
- Blackburn, Patrick, Maarten de Rijke, and Yde Venema, Modal Logic, vol. 53 of Cambridge Tracts in Theoretical Computer Sci- ence, Cambridge University Press, 2002.
- Block, Alexander C., and Benedikt Löwe, 'Modal logics and multiverses', RIMS Kokyuroku, 1949 (2015), 5-23.
- Buss, Samuel R., 'The modal logic of pure provability.', Notre Dame J. Formal Logic, 31 (1990), 2, 225-231.
- Chagrov, Alexander, and Michael Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, 1997.
- Chang, C.C., and H.J. Keisler, Model Theory, Studies in Logic and the Foundations of Mathematics, Elsevier Science, 1990.
- D'agostino, Giovanna, and Marco Hollenberg, 'Logical ques- tions concerning the µ-calculus: Interpolation, Lyndon and Loś-Tarski', Journal of Symbolic Logic, 65 (2000), 1, 310-332.
- Fine, Benjamin, Anthony Gaglione, Alexei Myasnikov, Ger- hard Rosenberger, and Dennis Spellman, The Elementary The- ory of Groups, digital original edn., Expositions in Mathematics, De Gruyter, 2014.
- Goldblatt, Robert, 'Diodorean modality in Minkowski spacetime', Studia Logica: An International Journal for Symbolic Logic, 39 (1980), 219-236.
- Goldblatt, Robert, Logics of Time and Computation, 2 edn., no. 7 in CSLI Lecture Notes, Center for the Study of Language and Informa- tion, 1992.
- Hamkins, Joel David, 'A simple maximality principle', Journal of Symbolic Logic, 68 (2003), 2, 527-550.
- Hamkins, Joel David, 'The modal logic of arithmetic potentialism and the universal algorithm', ArXiv e-prints, (2018), 1-35.
- Hamkins, Joel David, George Leibman, and Benedikt Löwe, 'Structural connections between a forcing class and its modal logic', Israel Journal of Mathematics, 207 (2015), 617-651.
- Hamkins, Joel David, and Benedikt Löwe, 'The modal logic of forcing', Transactions of the American Mathematical Society, 360 (2007), 4, 1793-1817.
- Henk, Paula, 'Kripke models built from models of arithmetic', in Martin Aher, Daniel Hole, Emil Jeřábek, and Clemens Kupke, (eds.), Logic, Language, and Computation, Springer, Berlin Heidelberg, 2015, pp. 157-174.
- Ignatiev, Konstantin N., 'The provability logic for Σ 1 - interpolability', Annals of Pure and Applied Logic, 64 (1993), 1, 1 - 25.
- Inamdar, Tanmay, and Benedikt Löwe, 'The modal logic of inner models', The Journal of Symbolic Logic, 81 (2016), 1, 225-236.
- Mal'cev, A. I., Algebraic Systems, Die Grundlehren der mathematis- chen Wissenschaften 192, Springer-Verlag Berlin Heidelberg, 1973.
- Marker, D., Model Theory : An Introduction, Graduate Texts in Mathematics, Springer New York, 2002.
- Rosenstein, Joseph G., Linear Orderings, Academic Press, 1982.
- Saveliev, D. I., 'On first-order expressibility of satisfiability in sub- models', in R. Iemhoff et al. (eds.), WoLLIC 2019, Lecture Notes in CS 11541, 2019, pp. 584-593.
- Saveliev, Denis I., and Ilya B. Shapirovsky, 'On modal logic of submodels', in 11th Advances in Modal Logic, Short Papers, 2016, pp. 115-119.
- Shavrukov, V.Yu., 'The logic of relative interpretability over Peano arithmetic', Tech. Rep. 4, Steklov Mathematical Institute, Moscow, 1988. In Russian.
- Shavrukov, V.Yu., Subalgebras of diagonalizable algebras of theories containing arithmetic, Instytut Matematyczny Polskiej Akademi Nauk, 1993.
- Shehtman, Valentin, 'Modal logics of domains on the real plane', Studia Logica, 42 (1983), 63-80.
- Shehtman, Valentin, 'Modal counterparts of Medvedev logic of fi- nite problems are not finitely axiomatizable', Studia Logica: An Inter- national Journal for Symbolic Logic, 49 (1990), 3, 365-385.
- Solovay, Robert M., 'Provability interpretations of modal logic', Israel Journal of Mathematics, 25 (1976), 3, 287-304.
- van Benthem, Johan, Logical Dynamics of Information and Interac- tion, Cambridge University Press, New York, NY, USA, 2014.
- Veltman, Frank, 'Defaults in update semantics', Journal of Philo- sophical Logic, 25 (1996), 3.
- Visser, Albert, 'An overview of interpretability logic', in Mar- cus Kracht, Maarten de Rijke, Heinrich Wansing, and Michael Za- kharyaschev, (eds.), Advances in Modal Logic 1, papers from the first workshop on "Advances in Modal logic," held in Berlin, Germany, 8-10 October 1996., CSLI Publications, 1996, pp. 307-359.
- Visser, Albert, 'The interpretability of inconsistency: Feferman's theorem and related results', Logic Group preprint series, 318 (2014).
- Westerståhl, Dag, 'Quantifiers in formal and natural languages', in Handbook of Philosophical Logic, 2nd edition, v.14, Springer, 2007, pp. 234-339.