A closed clockwork theory: $\mathbb{Z}_2$ parity and more
2022, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2207.07226Abstract
We develop a new class of clockwork theories with an augmented structure of the near-neighbour interactions along a one-dimensional closed chain. Such a topology leads to new and attractive features in addition to generating light states with hierarchical couplings via the usual clockwork mechanism. For one, there emerges a Z 2 symmetry under the exchange of fields resulting in a physical spectrum consisting of states, respectively even and odd under the exchange parity with a twofold degeneracy at each level. The lightest odd particle, being absolutely stable, could be envisaged as a potential dark matter candidate. The theory can also be obtained as a deconstruction of a five-dimensional theory embedded in a geometry generated by a linear dilaton theory on a S 1 /Z 2 orbifold with three equidistant 3-branes. Analogous to the discrete picture, the Z 2 symmetry in the bulk theory necessitates the existence of a KK spectrum of even and odd states, with doubly degenerate modes at each KK level when subject to certain boundary conditions.
References (50)
- M. Kawasaki and K. Nakayama, Axions: Theory and Cosmological Role, Ann. Rev. Nucl. Part. Sci. 63 (2013) 69 [1301.1123].
- S.F. King, Neutrino mass models, Rept. Prog. Phys. 67 (2004) 107 [hep-ph/0310204].
- A. de Gouvêa, Neutrino Mass Models, Ann. Rev. Nucl. Part. Sci. 66 (2016) 197.
- D.E. Kaplan and R. Rattazzi, Large field excursions and approximate discrete symmetries from a clockwork axion, Phys. Rev. D 93 (2016) 085007 [1511.01827].
- K. Choi and S.H. Im, Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry, JHEP 01 (2016) 149 [1511.00132].
- G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [1610.07962].
- H. Georgi, E.E. Jenkins and E.H. Simmons, Ununifying the Standard Model, Phys. Rev. Lett. 62 (1989) 2789.
- D. Choudhury, A Completely ununified electroweak model, Mod. Phys. Lett. A 6 (1991) 1185.
- R. Coy, M. Frigerio and M. Ibe, Dynamical Clockwork Axions, JHEP 10 (2017) 002 [1706.04529].
- P. Agrawal, J. Fan, M. Reece and L.-T. Wang, Experimental Targets for Photon Couplings of the QCD Axion, JHEP 02 (2018) 006 [1709.06085].
- A.J. Long, Cosmological Aspects of the Clockwork Axion, JHEP 07 (2018) 066 [1803.07086].
- K. Choi, H. Kim and S. Yun, Natural inflation with multiple sub-Planckian axions, Phys. Rev. D 90 (2014) 023545 [1404.6209].
- T. Flacke, C. Frugiuele, E. Fuchs, R.S. Gupta and G. Perez, Phenomenology of relaxion-Higgs mixing, JHEP 06 (2017) 050 [1610.02025].
- O. Davidi, R.S. Gupta, G. Perez, D. Redigolo and A. Shalit, The hierarchion, a relaxion addressing the Standard Model's hierarchies, JHEP 08 (2018) 153 [1806.08791].
- K.M. Patel, Clockwork mechanism for flavor hierarchies, Phys. Rev. D 96 (2017) 115013 [1711.05393].
- R. Alonso, A. Carmona, B.M. Dillon, J.F. Kamenik, J. Martin Camalich and J. Zupan, A clockwork solution to the flavor puzzle, JHEP 10 (2018) 099 [1807.09792].
- K.S. Babu and S. Saad, Flavor Hierarchies from Clockwork in SO(10) GUT, Phys. Rev. D 103 (2021) 015009 [2007.16085].
- G. von Gersdorff, Realistic GUT Yukawa couplings from a random clockwork model, Eur. Phys. J. C 80 (2020) 1176 [2005.14207].
- A. Ibarra, A. Kushwaha and S.K. Vempati, Clockwork for Neutrino Masses and Lepton Flavor Violation, Phys. Lett. B (2018) 86 [1711.02070].
- A. Banerjee, S. Ghosh and T.S. Ray, Clockworked VEVs and Neutrino Mass, JHEP 11 (2018) 075 [1808.04010].
- T. Kitabayashi, Clockwork origin of neutrino mixings, Phys. Rev. D 100 (2019) 035019 [1904.12516].
- T. Hambye, D. Teresi and M.H.G. Tytgat, A Clockwork WIMP, JHEP 07 (2017) 047 [1612.06411].
- J. Kim and J. McDonald, Clockwork Higgs portal model for freeze-in dark matter, Phys. Rev. D 98 (2018) 023533 [1709.04105].
- J. Kim and J. Mcdonald, Freeze-In Dark Matter from a sub-Higgs Mass Clockwork Sector via the Higgs Portal, Phys. Rev. D 98 (2018) 123503 [1804.02661].
- A. Goudelis, K.A. Mohan and D. Sengupta, Clockworking FIMPs, JHEP 10 (2018) 014 [1807.06642].
- N. Bernal, A. Donini, M.G. Folgado and N. Rius, FIMP Dark Matter in Clockwork/Linear Dilaton Extra-Dimensions, JHEP 04 (2021) 061 [2012.10453].
- M.T. Arun, Clockwork mirror neutron, 2204.06484.
- A. Kehagias and A. Riotto, Clockwork Inflation, Phys. Lett. B 767 (2017) 73 [1611.03316].
- S.H. Im, H.P. Nilles and A. Trautner, Exploring extra dimensions through inflationary tensor modes, JHEP 03 (2018) 004 [1707.03830].
- A.S. Joshipura, S. Mohanty and K.M. Patel, Inflation and long-range force from a clockwork D term, Phys. Rev. D 103 (2021) 035008 [2008.13334].
- N. Craig, I. Garcia Garcia and D. Sutherland, Disassembling the Clockwork Mechanism, JHEP 10 (2017) 018 [1704.07831].
- A. Ahmed and B.M. Dillon, Clockwork Goldstone Bosons, Phys. Rev. D 96 (2017) 115031 [1612.04011].
- Y.-J. Kang, S. Kim and H.M. Lee, The Clockwork Standard Model, JHEP 09 (2020) 005 [2006.03043].
- I. Antoniadis, A. Arvanitaki, S. Dimopoulos and A. Giveon, Phenomenology of TeV Little String Theory from Holography, Phys. Rev. Lett. 108 (2012) 081602 [1102.4043].
- P. Cox and T. Gherghetta, Radion Dynamics and Phenomenology in the Linear Dilaton Model, JHEP 05 (2012) 149 [1203.5870].
- L. Randall and R. Sundrum, A Large mass hierarchy from a small extra dimension, Phys. Rev. Lett. 83 (1999) 3370 [hep-ph/9905221].
- P. Cox, A.D. Medina, T.S. Ray and A. Spray, Radion/dilaton-higgs mixing phenomenology in light of the lhc, Journal of High Energy Physics 2014 (2014) .
- G.F. Giudice, Y. Kats, M. McCullough, R. Torre and A. Urbano, Clockwork/linear dilaton: structure and phenomenology, Journal of High Energy Physics 2018 (2018) .
- G.F. Giudice and M. McCullough, Comment on "Disassembling the Clockwork Mechanism", 1705.10162.
- H.-C. Cheng, C.T. Hill, S. Pokorski and J. Wang, The Standard Model in the Latticized Bulk, Phys. Rev. D 64 (2001) 065007 [hep-th/0104179].
- N. Arkani-Hamed, A.G. Cohen and H. Georgi, Electroweak symmetry breaking from dimensional deconstruction, Phys. B 513 (2001) 232 [hep-ph/0105239].
- I.I. Kogan, S. Mouslopoulos, A. Papazoglou, G.G. Ross and J. Santiago, A Three three-brane universe: New phenomenology for the new millennium?, Nucl. Phys. B 584 (2000) 313 [hep-ph/9912552].
- K. Agashe, A. Falkowski, I. Low and G. Servant, KK Parity in Warped Extra Dimension, JHEP 04 (2008) 027 [0712.2455].
- O. DeWolfe, D.Z. Freedman, S.S. Gubser and A. Karch, Modeling the fifth-dimension with scalars and gravity, Phys. Rev. D 62 (2000) 046008 [hep-th/9909134].
- W.D. Goldberger and M.B. Wise, Modulus stabilization with bulk fields, Phys. Rev. Lett. 83 (1999) 4922 [hep-ph/9907447].
- D. Choudhury, D.P. Jatkar, U. Mahanta and S. Sur, On stability of the three 3-brane model, JHEP 09 (2000) 021 [hep-ph/0004233].
- R. Barbieri and G.F. Giudice, Upper Bounds on Supersymmetric Particle Masses, Nucl. Phys. B 306 (1988) 63.
- L. Kofman, J. Martin and M. Peloso, Exact identification of the radion and its coupling to the observable sector, Phys. Rev. D 70 (2004) 085015 [hep-ph/0401189].
- H. Davoudiasl, J.L. Hewett and T.G. Rizzo, Brane localized curvature for warped gravitons, JHEP 08 (2003) 034 [hep-ph/0305086].
- D.P. George and K.L. McDonald, Gravity on a Little Warped Space, Phys. Rev. D 84 (2011) 064007 [1107.0755].