Constraints on parity violating conformal field theories in d = 3
Abstract
We derive constraints on three-point functions involving the stress ten-sor, T , and a conserved U (1) current, j, in 2+1 dimensional conformal field theories that violate parity, using conformal collider bounds introduced by Hofman and Mal-dacena. Conformal invariance allows parity-odd tensor-structures for the T T T and jjT correlation functions which are unique to three space-time dimensions. Let the parameters which determine the T T T correlation function be t 4 and α T , where α T is the parity-violating contribution. Similarly let the parameters which determine jjT correlation function be a 2 , and α J , where α J is the parity-violating contribution. We show that the parameters (t 4 , α T) and (a 2 , α J) are bounded to lie inside a disc at the origin of the t 4-α T plane and the a 2-α J plane respectively. We then show that large N Chern-Simons theories coupled to a fundamental fermion/boson lie on the circle which bounds these discs. The 't Hooft coupling determines the location of these theories on the boundary circles.
References (59)
- J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113-1133, [hep-th/9711200].
- I. R. Klebanov and A. M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B550 (2002) 213-219, [hep-th/0210114].
- R. G. Leigh and A. C. Petkou, Holography of the N=1 higher spin theory on AdS(4), JHEP 0306 (2003) 011, [hep-th/0304217].
- E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 0507 (2005) 044, [hep-th/0305040].
- O. Aharony, O. Bergman, D. L. Jafferis and J. Maldacena, N=6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091, [0806.1218].
- O. Aharony, O. Bergman and D. L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043, [0807.4924].
- S. Giombi, S. Minwalla, S. Prakash, S. P. Trivedi, S. R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C72 (2012) 2112, [1110.4386].
- O. Aharony, G. Gur-Ari and R. Yacoby, d=3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037, [1110.4382].
- D. Gaiotto, S. Giombi and X. Yin, Spin Chains in N=6 Superconformal Chern-Simons-Matter Theory, JHEP 04 (2009) 066, [0806.4589].
- A. Giveon and D. Kutasov, Seiberg Duality in Chern-Simons Theory, Nucl. Phys. B812 (2009) 1-11, [0808.0360].
- S. A. Hartnoll, P. K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B76 (2007) 144502, [0706.3215].
- S. Deser, R. Jackiw and S. Templeton, Topologically Massive Gauge Theories, Annals Phys. 140 (1982) 372-411.
- S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys.Rev.Lett. 48 (1982) 975-978.
- J. Frohlich and C. King, The Chern-Simons Theory And Knot Polynomials, Commun.Math.Phys. 126 (1989) 167.
- S. Giombi, Higher Spin CFT Duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, USA, June 1-26, 2015, pp. 137-214, 2017, 1607.02967, DOI.
- O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028, [1207.4593].
- G. Gur-Ari and R. Yacoby, Correlators of Large N Fermionic Chern-Simons Vector Models, JHEP 1302 (2013) 150, [1211.1866].
- O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large N Chern-Simons-Matter Theories, JHEP 03 (2013) 121, [1211.4843].
- S. Jain, S. Minwalla, T. Sharma, T. Takimi, S. R. Wadia et al., Phases of large N vector Chern-Simons theories on S 2 × S 1 , 1301.6169.
- A. Bedhotiya and S. Prakash, A test of bosonization at the level of four-point functions in Chern-Simons vector models, JHEP 12 (2015) 032, [1506.05412].
- G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013, [1507.04378].
- S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov, On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models, JHEP 01 (2017) 058, [1610.08472].
- O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093, [1512.00161].
- J. Frohlich and T. Kerler, Universality in quantum Hall systems, Nucl.Phys. B354 (1991) 369-417.
- J. Frohlich and A. Zee, Large scale physics of the quantum Hall fluid, Nucl.Phys. B364 (1991) 517-540.
- A. Zee, Quantum hall fluids, in Lecture Notes in Physics, Berlin Springer Verlag (H. B. Geyer, ed.), vol. 456, p. 99, 1995, cond-mat/9501022, DOI.
- S. Giombi, S. Prakash and X. Yin, A Note on CFT Correlators in Three Dimensions, JHEP 07 (2013) 105, [1104.4317].
- J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A46 (2013) 214011, [1112.1016].
- H. Osborn and A. C. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311-362, [hep-th/9307010].
- E. I. Buchbinder, S. M. Kuzenko and I. B. Samsonov, Superconformal field theory in three dimensions: Correlation functions of conserved currents, JHEP 06 (2015) 138, [1503.04961].
- E. I. Buchbinder, S. M. Kuzenko and I. B. Samsonov, Implications of N = 4 superconformal symmetry in three spacetime dimensions, JHEP 08 (2015) 125, [1507.00221].
- S. M. Kuzenko and I. B. Samsonov, Implications of N = 5, 6 superconformal symmetry in three spacetime dimensions, JHEP 08 (2016) 084, [1605.08208].
- E. Witten, SL(2, Z) action on three-dimensional conformal field theories with Abelian symmetry, In *Shifman, M. (ed.) et al.: From fields to strings, vol. 2* 1173-1200, [hep-th/0307041].
- R. G. Leigh and A. C. Petkou, SL(2, Z) action on three-dimensional CFT's and holography, JHEP 12 (2003) 020, [hep-th/0309177].
- C. Closset, T. T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091, [1206.5218].
- D. M. Hofman and J. Maldacena, Conformal collider physics: Energy and charge correlations, JHEP 05 (2008) 012, [0803.1467].
- J. de Boer, M. Kulaxizi and A. Parnachev, AdS(7)/CFT(6), Gauss-Bonnet Gravity, and Viscosity Bound, JHEP 03 (2010) 087, [0910.5347].
- A. Buchel, J. Escobedo, R. C. Myers, M. F. Paulos, A. Sinha and M. Smolkin, Holographic GB gravity in arbitrary dimensions, JHEP 03 (2010) 111, [0911.4257].
- X. O. Camanho and J. D. Edelstein, Causality constraints in AdS/CFT from conformal collider physics and Gauss-Bonnet gravity, JHEP 04 (2010) 007, [0911.3160].
- T. Faulkner, R. G. Leigh, O. Parrikar and H. Wang, Modular Hamiltonians for Deformed Half-Spaces and the Averaged Null Energy Condition, JHEP 09 (2016) 038, [1605.08072].
- D. M. Hofman, D. Li, D. Meltzer, D. Poland and F. Rejon-Barrera, A Proof of the Conformal Collider Bounds, JHEP 06 (2016) 111, [1603.03771].
- T. Hartman, S. Kundu and A. Tajdini, Averaged Null Energy Condition from Causality, 1610.05308.
- Z. Komargodski, M. Kulaxizi, A. Parnachev and A. Zhiboedov, Conformal Field Theories and Deep Inelastic Scattering, Phys. Rev. D95 (2017) 065011, [1601.05453].
- S. D. Chowdhury, J. R. David and S. Prakash, Spectral sum rules for conformal field theories in arbitrary dimensions, 1612.00609.
- J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003, [1204.3882].
- A. Zhiboedov, On Conformal Field Theories With Extremal a/c Values, JHEP 04 (2014) 038, [1304.6075].
- D. Chowdhury, S. Raju, S. Sachdev, A. Singh and P. Strack, Multipoint correlators of conformal field theories: implications for quantum critical transport, Phys. Rev. B87 (2013) 085138, [1210.5247].
- J. Erdmenger and H. Osborn, Conserved currents and the energy momentum tensor in conformally invariant theories for general dimensions, Nucl. Phys. B483 (1997) 431-474, [hep-th/9605009].
- S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037, [1305.7235].
- C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J.Phys. A46 (2013) 214009, [1207.4485].
- S. Banerjee and D. Radicevic, Chern-Simons theory coupled to bifundamental scalars, 1308.2077.
- V.Gurucharan and S.Prakash, Anomalous Dimensions in Non-Supersymmetric Bifundamental Chern-Simons Theories, 1404.7849.
- A. Bayntun, C. Burgess, B. P. Dolan and S.-S. Lee, AdS/QHE: Towards a Holographic Description of Quantum Hall Experiments, New J.Phys. 13 (2011) 035012, [1008.1917].
- K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S. P. Trivedi and A. Westphal, Holography of Dyonic Dilaton Black Branes, JHEP 10 (2010) 027, [1007.2490].
- E. Sezgin, E. D. Skvortsov and Y. Zhu, Chern-Simons Matter Theories and Higher Spin Gravity, 1705.03197.
- V. E. Didenko and M. A. Vasiliev, Test of the local form of higher-spin equations via AdS/CFT, 1705.03440.
- T. Hartman, S. Jain and S. Kundu, Causality Constraints in Conformal Field Theory, JHEP 05 (2016) 099, [1509.00014].
- T. Hartman, S. Jain and S. Kundu, A New Spin on Causality Constraints, JHEP 10 (2016) 141, [1601.07904].
- A. Dymarsky, J. Penedones, E. Trevisani and A. Vichi, Charting the space of 3D CFTs with a continuous global symmetry, 1705.04278.