Academia.eduAcademia.edu

Outline

Research Ethics in the Age of Digital Platforms

Science and Engineering Ethics

https://doi.org/10.1007/S11948-023-00437-1

Abstract

Scientific research is growingly increasingly reliant on "microwork" or "crowdsourcing" provided by digital platforms to collect new data. Digital platforms connect clients and workers, charging a fee for an algorithmically managed workflow based on Terms of Service agreements. Although these platforms offer a way to make a living or complement other sources of income, microworkers lack fundamental labor rights and basic safe working conditions, especially in the Global South. We ask how researchers and research institutions address the ethical issues involved in considering microworkers as "human participants." We argue that current scientific research fails to treat microworkers in the same way as in-person human participants, producing de facto a double morality: one applied to people with rights acknowledged by states and international bodies (e.g., the Helsinki Declaration), the other to guest workers of digital autocracies who have almost no right...

References (51)

  1. Anwar, A. M., & Graham, M. (2022). The digital continent. Placing Africa in planetary networks of work. Oxford University Press.
  2. Aytes, A. (2012). Return of the crowds: Mechanical Turk and neoliberal states of exception. In T. Scholz (Ed.), Digital labor (pp. 87-105). Routledge.
  3. Behrend, T. S., Sharek, D. J., Meade, A. W., & Wiebe, E. N. (2011). The viability of crowdsourc- ing for survey research. Behavior Research Methods, 43(3), 800-813. https:// doi. org/ 10. 3758/ s13428-011-0081-0
  4. Berg, J., Furrer, M., Harmon, E., Rani, U., & Silberman, M. S. (2018). Digital labour platforms and the future of work. In Towards decent work in the online world. Rapport de l'OIT.
  5. Berinsky, A. J., Huber, G. A., & Lenz, G. S. (2012). Evaluating online labor markets for experimen- tal research: Amazon.com's mechanical turk. Political Analysis, 20(3), 351-368. https:// doi. org/ 10. 1093/ pan/ mpr057
  6. Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon's Mechanical Turk: A new source of inex- pensive, yet high-quality, data? Perspectives on Psychological Science, 6(1), 3-5. https:// doi. org/ 10. 1177/ 17456 91610 393980
  7. Buhrmester, M. D., Talaifar, S., & Gosling, S. D. (2018). An evaluation of Amazon's Mechanical Turk, its rapid rise, and its effective use. Perspectives on Psychological Science, 13(2), 149-154. https:// doi. org/ 10. 1177/ 17456 91617 706516
  8. Casilli, A. A., Tubaro, P., Le Ludec, C., Coville, M., Besenval, M., Mouhtare, T., & Wahal, E. (2019). Le micro-travail en France. Derrière l'automatisation de nouvelles précarités au travail? Rapport Final Projet DiPLab 'Digital Platform Labor'. http:// diplab. eu
  9. Cognilytica. (2020). Data preparation and labeling for AI 2020. Report CGR-DLP20.
  10. Couldry, N., & Mejias, U. A. (2019). Data colonialism: Rethinking big data's relation to the contem- porary subject. Television New Media, 20(4), 336-349. https:// doi. org/ 10. 1177/ 15274 76418 796632
  11. Crump, M. J. C., McDonnell, J. V., & Gureckis, T. M. (2013). Evaluating Amazon's Mechanical Turk as a tool for experimental behavioral research. PLOS One. https:// doi. org/ 10. 1371/ journ al. pone. 00574 10
  12. Denton, E., Hanna, A., Amironesei, R., Smart, A., & Nicole, H. (2021). On the genealogy of machine learning datasets: A critical history of ImageNet. Big Data & Society, 8(2), 205.
  13. Ekbia, H. R., & Nardi, B. A. (2017). Heteromation, and other stories of computing and capitalism. MIT Press.
  14. Floridi, L. (2020). The fight for digital sovereignty: What it is, and why it matters, especially for the EU. Philosophy and Technology, 33(3), 369-378. https:// doi. org/ 10. 1007/ s13347-020-00423-6
  15. Gleibs, I. H., & Albayrak-Aydemir, N. (2022). Ethical concerns arising from recruiting workers from Amazon's Mechanical Turk as research participants: Commentary on Burnette et al. (2021). Inter- national Journal of Eating Disorders, 55(2), 276-277. https:// doi. org/ 10. 1002/ eat. 23658
  16. Goodman, J. K., & Paolacci, G. (2017). Crowdsourcing consumer research. Journal of Consumer Research, 44(1), 196-210. https:// doi. org/ 10. 1093/ jcr/ ucx047
  17. Gray, M. L., & Suri, S. (2019). Ghost work how to stop Silicon Valley from building a new global under- class (Kindle Edi). HarperCollins.
  18. Grohmann, R., & Araújo, W. F. (2021). O chão de fábrica (brasileiro) da inteligência artificial: A produção de dados eo papel da comunicação entre trabalhadores de Appen e Lionbridge. Palabra Clave, 24(3), e2438-e2438.
  19. Hauser, D. J., & Schwarz, N. (2016). Attentive turkers: MTurk participants perform better on online attention checks than do subject pool participants. Behavior Research Methods, 48(1), 400-407. https:// doi. org/ 10. 3758/ s13428-015-0578-z
  20. Horton, J. J., Rand, D. G., & Zeckhauser, R. J. (2011). The online laboratory: Conducting experi- ments in a real labor market. Experimental Economics, 14(3), 399-425. https:// doi. org/ 10. 1007/ s10683-011-9273-9
  21. ILO. (2022). World employment and social outlook: Trends 2022. In World employment and social out- look: The role of digital labour the world of work. https:// doi. org/ 10. 54394/ dspl5 113
  22. Israel, M. (2015). Research ethics and integrity for social scientists. Beyond regulatory compliance. Sage.
  23. Kennedy, R., Clifford, S., Burleigh, T., Waggoner, P. D., Jewell, R., & Winter, N. J. G. (2020). The shape of and solutions to the MTurk quality crisis. Political Science Research and Methods, 8(4), 614- 629. https:// doi. org/ 10. 1017/ psrm. 2020.6
  24. Kottow, M. (2007). Participación informada en clínica e investigación biomédica: Las múltiples facetas de la decisión y el consentimiento informados. UNESCO.
  25. Lease, M., Hullman, J., Bigham, J., Bernstein, M., Kim, J., Lasecki, W., Bakhshi, S., Mitra, T., Miller, R. (2013). Mechanical Turk is not anonymous. Available at SSRN 2228728.
  26. Lindquist, J. (2022). Follower factories in Indonesia and beyond: Automation and labor in a transnational market. In M. Graham & F. Ferrari (Eds.), Digital work in the planetary market (p. 59). MIT Press.
  27. Martin, D., Carpendale, S., Gupta, N., Hoßfeld, T., Naderi, B., Redi, J., Siahaan, E., & Wechsung, I. (2017). Understanding the crowd: Ethical and practical matters in the academic use of crowdsourc- ing. In D. Archambault, H. Purchase, & T. Hoßfeld (Eds.), Crowdsourcing and human-centered experiments (pp. 27-69). Springer.
  28. Mason, W., & Suri, S. (2012). Conducting behavioral research on Amazon's Mechanical Turk. Behavior Research Methods, 44(1), 1-23. https:// doi. org/ 10. 3758/ s13428-011-0124-6
  29. Miceli, M., Schuessler, M., & Yang, T. (2020). Between subjectivity and imposition: Power dynamics in data annotation for computer vision. Proceedings of the ACM on Human-Computer Interaction, 4(CSCW2), 1-25.
  30. Michaels, D. (2020). The triumph of doubt: Dark money and the science of deception. Oxford University Press.
  31. Michaels, D., & Monforton, C. (2005). Manufacturing uncertainty: Contested science and the protection of the public's health and environment. American Journal of Public Health, 95(S1), S39-S48.
  32. Miller, J. D., Crowe, M., Weiss, B., Maples-Keller, J. L., & Lynam, D. R. (2017). Using online, crowd- sourcing platforms for data collection in personality disorder research: The example of Amazon's Mechanical Turk. Personality Disorders-Theory Research and Treatment, 8(1), 26-34. https:// doi. org/ 10. 1037/ per00 00191
  33. Molina, J. L., & Borgatti, S. P. (2021). Moral bureaucracies and social networks research. Social Net- works, 67, 13-19. https:// doi. org/ 10. 1016/j. socnet. 2019. 11. 001
  34. Mortensen, K., & Hughes, T. L. (2018). Comparing Amazon's Mechanical Turk platform to conventional data collection methods in the health and medical research literature. Journal of General Internal Medicine, 33(4), 533-538. https:// doi. org/ 10. 1007/ s11606-017-4246-0
  35. Moss, A. J., et al. (2021). Is it ethical to use Mechanical Turk for behavioral research? Relevant data from a representative survey of MTturk participants and wages. https:// doi. org/ 10. 31234/ osf. io/ jbc9d
  36. Ophir, Y., Sisso, I., Asterhan, C. S. C., Tikochinski, R., & Reichart, R. (2020). The turker blues: Hidden factors behind increased depression rates among Amazon's Mechanical Turkers. Clinical Psycho- logical Science, 8(1), 65-83. https:// doi. org/ 10. 1177/ 21677 02619 865973
  37. Paolacci, G., & Chandler, J. (2014). Inside the turk: Understanding Mechanical Turk as a participant pool. Current Directions in Psychological Science, 23(3), 184-188. https:// doi. org/ 10. 1177/ 09637 21414 531598
  38. Peer, E., Vosgerau, J., & Acquisti, A. (2014). Reputation as a sufficient condition for data quality on Amazon Mechanical Turk. Behavior Research Methods, 46(4), 1023-1031. https:// doi. org/ 10. 3758/ s13428-013-0434-y
  39. Posada, J. (2022). Embedded reproduction in platform data work. Information, Communication & Soci- ety. https:// doi. org/ 10. 1080/ 13691 18X. 2022. 20498 49
  40. Robinson, J., Rosenzweig, C., Moss, A. J., & Litman, L. (2019). Tapped out or barely tapped? Recom- mendations for how to harness the vast and largely unused potential of the Mechanical Turk partici- pant pool. PLoS ONE, 14(12), e0226394.
  41. Schmidt, F. A. (2022). The planetary stacking order of multilayered crowd-AI systems. In M. Graham & F. Ferrari (Eds.), Digital work in the planetary market (p. 137). MIT Press.
  42. Seeman, M. (1959). On the meaning of alienation. Sociological Review, 24(6), 783-791.
  43. Sheehan, K. B. (2018). Crowdsourcing research: Data collection with Amazon's Mechanical Turk. Com- munication Monographs, 85(1), 140-156. https:// doi. org/ 10. 1080/ 03637 751. 2017. 13420 43
  44. Srnicek, N. (2017). Platform capitalism. Polity Press.
  45. Strickland, J. C., & Stoops, W. W. (2019). The use of crowdsourcing in addiction science research: Ama- zon Mechanical Turk. Experimental and Clinical Psychopharmacology, 27(1), 1-18. https:// doi. org/ 10. 1037/ pha00 00235
  46. Tubaro, P., Casilli, A. A., & Coville, M. (2020). The trainer, the verifier, the imitator: Three ways in which human platform workers support artificial intelligence. Big Data & Society, 7(1), 2053951720919776. https:// doi. org/ 10. 1177/ 20539 51720 919776
  47. Tubaro, P., Coville, M., Le Ludec, C., & Casilli, A. (2022). Hidden inequalities : The gendered labour of women on micro-tasking platforms introduction : The gendered dimension of work on micro- tasking platforms. Internet Policy Review, 11(1), 1-26.
  48. Van Den Hoonaard, W. C. (2011). The seduction of ethics: Transforming the social sciences. University of Toronto Press.
  49. Verma, N., Shiroma, K., Rich, K., Fleischmann, K. R., Xie, B., & Lee, M. K. (2021). Conducting quan- titative research with hard-to-reach-online populations: Using prime panels to rapidly survey older adults during a pandemic BT-diversity, divergence, dialogue. In K. Toeppe, H. Yan, & S. K. W. Chu (Eds.), International conference on information (pp. 384-393).
  50. Wood, A. J., Graham, M., Lehdonvirta, V., & Hjorth, I. (2019). Good gig, bad gig: Autonomy and algo- rithmic control in the global gig economy. Work, Employment and Society, 33(1), 56-75. https:// doi. org/ 10. 1177/ 09500 17018 785616
  51. Zuboff, S. (2019). The age of surveillance capitalism: The fight for a human future at the new frontier of power. Public Affairs.