Academia.eduAcademia.edu

Outline

Classical Mechanics (2009)

2009, Strauch, Dieter

https://doi.org/10.1007/978-3-540-73616-5

Abstract

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

References (22)

  1. 3 The Forced Harmonic Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . . .
  2. 3.1 Equation of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  3. 3.2 Solution of the Inhomogeneous Linear Differential Equation by Fourier Transformation . . . . . . . . . . . . . . . . .
  4. 3.3 Green Function of the Damped Oscillator in Frequency Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  5. Time-Dependent Green Function . . . . . . . . . . . . . . . . . . . .
  6. 3.5 Energy Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  7. Coupled Oscillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  8. 4.1 Introductory Example: Stretching Vibrations in the CO 2 Molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
  9. 4.2 General Coupled Vibrations . . . . . . . . . . . . . . . . . . . . . . . .
  10. 4.3 Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary: Harmonic Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . References
  11. W. Greiner, J. Rafelski, Theoretische Physik Band 3A Special Relativity theory This is one of the volumes of the text book series, which I personally do not like particularly; there is material overlapping with that of other volumes (Vol. 1
  12. Mechanics I, Vol. 3 Electrodynamics), such that this volume is thus an (occa- sionally interesting) collection; with problems and solutions.
  13. W. Rindler, Essential Relativity, 2nd edn. (Springer, Berlin, 1979) DM 72, 284 pp. This is a very beautifully and clearly written book, in which Special (104 pp.) and General Relativity theory (180 pp.) is treated in a compact overview.
  14. W. Rindler, Introduction to Special Relativity, 2nd edn. (Clarendon, Oxford, 1992) pp. 59-185. A somewhat more elementary version of the first part of the preceding book, it contains in addition continuum mechanics.
  15. C. Special References
  16. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
  17. I.S. Gradshteyn, I.M. Ryzhik (abbreviated by GR), Tables of Integrals, Series, and Products, 2nd edn. (Academic, New York, 1980).
  18. G. Herzberg, Molecular Spectra and Molecular Structure II: Infrared and Raman Spectra of Polyatomic Molecules, (van Nostrand, New York, 1945).
  19. E.L. Hill, Rev. Mod. Phys. 23, 253 (1951).
  20. K. Jung, Figur der Erde, Handbook of Physics, vol. 17 (Springer, Heidelberg, 1956) p. 606.
  21. E. Noether, Nachr. Akad. Wiss. Göttingen II, Math. P. Kl. 235 (1918).
  22. H. Wänke The earth in the planetary system, Handbook of Physics (New Series) vol. V/2a (1984), Fig. 5 (p. 29).