On the Pattern of Standard Model Fermions and Charges
2016, viXra
Abstract
We observe that the Standard Model's fermions can be mapped onto a 7-bit pattern, and that these bits can be used to calculate the various charges (color, weak isospin, hypercharge, and electromagnetic) for these particles. A geometrical object, the trihepton, is proposed as means of understanding where the pattern of fermions and the simple formulas for the charges come from. Its relationship with the Fano plane from projective geometry is considered. Issues and implications of the model are discussed. A fourth generation of fermions with spin 3/2 and absolute charge (2, 5/3, 4/3, 1) is hypothesized, and it is also suggested that there may be bosons associated with neutrino oscillation.
References (48)
- T. Dorigo, [http://dorigo.wordpress.com/2008/03/25/thou-shalt-have-three-generations/].
- O. Eberhardt et al, "Impact of a Higgs Boson at a Mass of 126 GeV on the Standard Model with Three and Four Fermion Generations", Phys. Rev. Lett. 109, 241802, 2012.
- S. L. Glashow, The Future of Elementary Particle Physics, p. 29, Lyman Laboratory of Physics, Harvard University, HUTP-79/A059, 1979.
- P. Tanedo, [http://www.quantumdiaries.org/2012/04/17/name-these-brandsplants-name-these-particles/]
- H. Harari, "A schematic model of quarks and leptons", Phys.Lett. B, vol. 86, 83, 1979.
- M. A. Shupe, "A composite model of leptons and quarks",Phys. Lett. B, vol. 86, 87, 1979.
- I. D'Souza, C.S. Kalman, Preons: Models of Leptons, Quarks and Gauge Bosons as Composite Objects, World Scientific 1992.
- H. Saller, "The central correlations of hypercharge, isospin, colour and chirality in the Standard Model", [arXiv:hep-th/9802112v1].
- P. Zenczykowski, "The Harari-Shupe preon model and nonrelativistic quantum phase space", [arXiv:0803.0223v1 [hep-th]].
- M. Everaldo de Souza, "The Higgs-like Bosons and Quark Compositeness",[arXiv:1301.0130v3 [hep-ph]].
- A. G. Lisi, "An Exceptionally Simple Theory of Everything", [arXiv:0711.0770 [hep-th]].
- C. A. Brannen, "The Geometry of Fermions", [http://www.brannenworks.com/], 2004.
- G. Feldman, R. Holman, "SO(14) as a grand unification group and the need for intermediate symmetries", J. Phys. G: Nucl. Phys. 9 (1983) 7-56.
- W.J. Stirling, E. Vryonidou, "Effect of spin-3/2 top quark excitation on t¯t production at the LHC", [arXiv:1110.1565v1 [hep-ph]].
- C. J. C. Burges, H. J. Schnitzer, Nucl. Phys. B228, 464, 1983. J. H. Kuhn, P. M. Zerwas, Phys. Lett. B147, 189, 1984.
- J. H. Kuhn, H. D. Tholl, P. M. Zerwas, Phys. Lett. B158, 270, 1985. B. Moussallam, V. Soni, Phys. Rev. D39, 1883-1891, 1989.
- F. M. L. Almeida, Jr., J. H. Lopes, J. A. Martins Simoes, A. J. Ramalho, Phys. Rev. D53, 3555-3558, 1996. [arXiv:hep-ph/9509364].
- D. A. Dicus, S. Gibbons, S. Nandi, [arXiv:hep-ph/9806312].
- R. Walsh, A. J. Ramalho, Phys. Rev. D60, 077302, 1999. [arXiv:hep-ph/9907364].
- O. Cakir, A. Ozansoy, Phys. Rev. D77, 035002, 2008. [arXiv:0709.2134 [hep-ph]].
- L. Randall and R. Sundrum, "A Large Mass Hierarchy from a Small Extra Dimension", Phys. Rev. Lett. 83, 3370, 1999.
- P. B. Pal, "Dirac, Majorana and Weyl fermions", [arXiv:1006.1718v2 [hep-ph]].
- Textbooks P. Binétruy, Supersymmetry: Theory, Experiment, and Cosmology, Oxford University Press, New York, 2006.
- D. Griffiths, Introduction to Elementary Particles, Wiley-VCH, New York, 2008.
- G. Kane, Modern Elementary Particle Physics, Addison-Wesley Publishing, New York, 1987. P. Labelle, Supersymmetry Demystified , McGraw Hill, New York, 2010.
- M. Herrero, The Standard Model, [arXiv:9812242v1 [hep-ph]].
- P. Langacker, Introduction to the Standard Model and Electroweak physics, [arXiv:0901.0241v1 [hep-ph]].
- S. F. Novaes, Standard Model: An Introduction, [arXiv:0001283v1 [hep-ph]].
- Standard Model P. A. M. Dirac, "The Quantum theory of electron," Proc. Roy. Soc. Lond. A 117 (1928) 610-624.
- S. L. Glashow, Nucl. Phys. 22 (1961) 579.
- S. Weinberg, Phys. Rev. Lett. 19, 1264 (1967).
- A. Salam in Elementary Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stockholm 1969), 367-377.
- C.-N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954).
- M.Gell-Mann, Phys.Lett.8(1964) 214.
- G.Zweig, CERN Report No. 8182/TH 401, (1964).
- W. Anderson, Phys. Rev. 130, 439 (1963).
- W. Higgs, Phys. Lett. 12, 132 (1964).
- W. Higgs, Phys. Rev. 145, 1156 (1966).
- F. Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964).
- G. S. Guralnik, C. R. Hagen and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).
- G. 't Hooft, Nucl. Phys. B35, 167 (1971).
- G. 't Hooft and M. J. G. Veltman, Nucl. Phys. B50, 318 (1972).
- J. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343 (1973).
- H. D. Politzer, Phys. Rev. Lett. 30, 1346 (1973).
- H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B47, 365 (1973).
- N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).
- M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
- L. Wolfenstein, Phys. Rev. Lett. 51, p. 1945 (1983).