Nonlinear stability of source defects in oscillatory media
2018, arXiv: Analysis of PDEs
Abstract
In this paper, we prove the nonlinear stability under localized perturbations of spectrally stable time-periodic source defects of reaction-diffusion systems. Consisting of a core that emits periodic wave trains to each side, source defects are important as organizing centers of more complicated flows. Our analysis uses spatial dynamics combined with an instantaneous phase-tracking technique to obtain detailed pointwise estimates describing perturbations to lowest order as a phase-shift radiating outward at a linear rate plus a pair of localized approximately Gaussian excitations along the phase-shift boundaries; we show that in the wake of these outgoing waves the perturbed solution converges time-exponentially to a space-time translate of the original source pattern.
References (32)
- W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.
- M. Beck, H. J. Hupkes, B. Sandstede, and K. Zumbrun. Nonlinear stability of semidiscrete shocks for two-sided schemes. SIAM J. Math. Anal., 42(2):857-903, 2010.
- M. Beck, T. T. Nguyen, B. Sandstede, and K. Zumbrun. Toward nonlinear stability of sources via a modified burgers equation. Physica D, 241(4):382-392, 2012.
- M. Beck, T. T. Nguyen, B. Sandstede, and K. Zumbrun. Nonlinear stability of source defects in the complex Ginzburg-Landau equation. Nonlinearity, 27(4):739-786, 2014.
- M. Beck, B. Sandstede, and K. Zumbrun. Nonlinear stability of time-periodic viscous shocks. Arch. Ration. Mech. Anal., 196(3):1011-1076, 2010.
- M. C. Cross and P. Hohenberg. Pattern formation out of equilibrium. Rev. Mod. Phys., 65:851- 1112, 1993.
- A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wave trains. Mem. Amer. Math. Soc., 199(934), 2009.
- T. Gallay, G. Schneider, and H. Uecker. Stable transport of information near essentially unstable localized structures. Discrete Contin. Dyn. Syst. Ser. B, 4(2):349-390, 2004.
- R. A. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math., 51(7):797-855, 1998.
- L. Ge, O. Qi, V. Petrov, and H. Swinney. Transition from simple rotating chemical spirals to meandering and traveling spirals. Phys. Rev. Lett., 77:2105-2108, 1996.
- P. Howard and K. Zumbrun. Stability of undercompressive shock profiles. J. Differ. Eqns., 225(1):308-360, 2006.
- M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability. Arch. Ration. Mech. Anal., 207(2):693-715, 2013.
- M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation. Arch. Ration. Mech. Anal., 207(2):669-692, 2013.
- M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Behavior of periodic solutions of vis- cous conservation laws under localized and nonlocalized perturbations. Invent. Math., 197(1):115- 213, 2014.
- M. A. Johnson and K. Zumbrun. Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(4):471- 483, 2011.
- T. Kapitula and B. Sandstede. Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D, 124(1-3):58-103, 1998.
- C. Mascia and K. Zumbrun. Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal., 169(3):177-263, 2003.
- S. Nettesheim, A. von Oertzen, H. H. Rotermund, and G. Ertl. Reaction-diffusion patterns in the catalytic co-oxidation on pt(110)-front propagation and spiral waves. J. Chem. Phys., 98:9977- 9985, 1993.
- L. Pastur, M. Westra, and W. van de Water. Sources and sinks in id traveling waves. Physica D, 174:71-83, 2003.
- J. J. Perraud, A. de Wit, E. Dulos, P. de Kepper, G. Dewel, and P. Borckmans. One-dimensional "spirals": Novel asynchroneous chemical wave sources. Phys. Rev. Lett., 71:1272-1275, 1993.
- D. Peterhof, B. Sandstede, and A. Scheel. Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders. J. Differential Equations, 140(2):266-308, 1997.
- M. Raoofi and K. Zumbrun. Stability of undercompressive viscous shock profiles of hyperbolic- parabolic systems. J. Differ. Eqns., 246(4):1539-1567, 2009.
- B. Sandstede and A. Scheel. On the structure of spectra of modulated travelling waves. Math. Nachr., 232:39-93, 2001.
- B. Sandstede and A. Scheel. Defects in oscillatory media: toward a classification. SIAM J. Appl. Dyn. Syst., 3(1):1-68 (electronic), 2004.
- B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete Contin. Dyn. Syst., 10(4):941-964, 2004.
- B. Sandstede and A. Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete Contin. Dyn. Syst., 20(1):139-158, 2008.
- B. Sandstede, A. Scheel, G. Schneider, and H. Uecker. Diffusive mixing of periodic wave trains in reaction-diffusion systems. J. Differ. Eqns., 252(5):3541-3574, 2012.
- M. van Hecke. Building blocks of spatiotemporal intermittency. Phys. Rev. Lett., 80:1896-1899, 1998.
- W. van Saarloos. The complex Ginzburg-Landau equation for beginners. In Spatio-temporal patterns in nonequilibrium complex systems (Santa Fe, NM, 1993), Santa Fe Inst. Stud. Sci. Complexity Proc. XXI, pages 19-31. Addison-Wesley, Reading, MA, 1995.
- W. van Saarloos and P. C. Hohenberg. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Physica D, 56(4):303-367, 1992.
- M. Yoneyama, A. Fujii, and S. Maeda. Wavelength-doubled spiral fragments in photosensitive monolayers. J. Amer. Chem. Soc., 117:8188-8191, 1995.
- K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47(3):741-871, 1998.