Academia.eduAcademia.edu

Outline

Nonlinear stability of source defects in oscillatory media

2018, arXiv: Analysis of PDEs

Abstract

In this paper, we prove the nonlinear stability under localized perturbations of spectrally stable time-periodic source defects of reaction-diffusion systems. Consisting of a core that emits periodic wave trains to each side, source defects are important as organizing centers of more complicated flows. Our analysis uses spatial dynamics combined with an instantaneous phase-tracking technique to obtain detailed pointwise estimates describing perturbations to lowest order as a phase-shift radiating outward at a linear rate plus a pair of localized approximately Gaussian excitations along the phase-shift boundaries; we show that in the wake of these outgoing waves the perturbed solution converges time-exponentially to a space-time translate of the original source pattern.

References (32)

  1. W. Arendt, C. J. K. Batty, M. Hieber, and F. Neubrander. Vector-valued Laplace transforms and Cauchy problems, volume 96 of Monographs in Mathematics. Birkhäuser/Springer Basel AG, Basel, second edition, 2011.
  2. M. Beck, H. J. Hupkes, B. Sandstede, and K. Zumbrun. Nonlinear stability of semidiscrete shocks for two-sided schemes. SIAM J. Math. Anal., 42(2):857-903, 2010.
  3. M. Beck, T. T. Nguyen, B. Sandstede, and K. Zumbrun. Toward nonlinear stability of sources via a modified burgers equation. Physica D, 241(4):382-392, 2012.
  4. M. Beck, T. T. Nguyen, B. Sandstede, and K. Zumbrun. Nonlinear stability of source defects in the complex Ginzburg-Landau equation. Nonlinearity, 27(4):739-786, 2014.
  5. M. Beck, B. Sandstede, and K. Zumbrun. Nonlinear stability of time-periodic viscous shocks. Arch. Ration. Mech. Anal., 196(3):1011-1076, 2010.
  6. M. C. Cross and P. Hohenberg. Pattern formation out of equilibrium. Rev. Mod. Phys., 65:851- 1112, 1993.
  7. A. Doelman, B. Sandstede, A. Scheel, and G. Schneider. The dynamics of modulated wave trains. Mem. Amer. Math. Soc., 199(934), 2009.
  8. T. Gallay, G. Schneider, and H. Uecker. Stable transport of information near essentially unstable localized structures. Discrete Contin. Dyn. Syst. Ser. B, 4(2):349-390, 2004.
  9. R. A. Gardner and K. Zumbrun. The gap lemma and geometric criteria for instability of viscous shock profiles. Comm. Pure Appl. Math., 51(7):797-855, 1998.
  10. L. Ge, O. Qi, V. Petrov, and H. Swinney. Transition from simple rotating chemical spirals to meandering and traveling spirals. Phys. Rev. Lett., 77:2105-2108, 1996.
  11. P. Howard and K. Zumbrun. Stability of undercompressive shock profiles. J. Differ. Eqns., 225(1):308-360, 2006.
  12. M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Nonlocalized modulation of periodic reaction diffusion waves: nonlinear stability. Arch. Ration. Mech. Anal., 207(2):693-715, 2013.
  13. M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Nonlocalized modulation of periodic reaction diffusion waves: the Whitham equation. Arch. Ration. Mech. Anal., 207(2):669-692, 2013.
  14. M. A. Johnson, P. Noble, L. M. Rodrigues, and K. Zumbrun. Behavior of periodic solutions of vis- cous conservation laws under localized and nonlocalized perturbations. Invent. Math., 197(1):115- 213, 2014.
  15. M. A. Johnson and K. Zumbrun. Nonlinear stability of spatially-periodic traveling-wave solutions of systems of reaction-diffusion equations. Ann. Inst. H. Poincaré Anal. Non Linéaire, 28(4):471- 483, 2011.
  16. T. Kapitula and B. Sandstede. Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations. Phys. D, 124(1-3):58-103, 1998.
  17. C. Mascia and K. Zumbrun. Pointwise Green function bounds for shock profiles of systems with real viscosity. Arch. Ration. Mech. Anal., 169(3):177-263, 2003.
  18. S. Nettesheim, A. von Oertzen, H. H. Rotermund, and G. Ertl. Reaction-diffusion patterns in the catalytic co-oxidation on pt(110)-front propagation and spiral waves. J. Chem. Phys., 98:9977- 9985, 1993.
  19. L. Pastur, M. Westra, and W. van de Water. Sources and sinks in id traveling waves. Physica D, 174:71-83, 2003.
  20. J. J. Perraud, A. de Wit, E. Dulos, P. de Kepper, G. Dewel, and P. Borckmans. One-dimensional "spirals": Novel asynchroneous chemical wave sources. Phys. Rev. Lett., 71:1272-1275, 1993.
  21. D. Peterhof, B. Sandstede, and A. Scheel. Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders. J. Differential Equations, 140(2):266-308, 1997.
  22. M. Raoofi and K. Zumbrun. Stability of undercompressive viscous shock profiles of hyperbolic- parabolic systems. J. Differ. Eqns., 246(4):1539-1567, 2009.
  23. B. Sandstede and A. Scheel. On the structure of spectra of modulated travelling waves. Math. Nachr., 232:39-93, 2001.
  24. B. Sandstede and A. Scheel. Defects in oscillatory media: toward a classification. SIAM J. Appl. Dyn. Syst., 3(1):1-68 (electronic), 2004.
  25. B. Sandstede and A. Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete Contin. Dyn. Syst., 10(4):941-964, 2004.
  26. B. Sandstede and A. Scheel. Relative Morse indices, Fredholm indices, and group velocities. Discrete Contin. Dyn. Syst., 20(1):139-158, 2008.
  27. B. Sandstede, A. Scheel, G. Schneider, and H. Uecker. Diffusive mixing of periodic wave trains in reaction-diffusion systems. J. Differ. Eqns., 252(5):3541-3574, 2012.
  28. M. van Hecke. Building blocks of spatiotemporal intermittency. Phys. Rev. Lett., 80:1896-1899, 1998.
  29. W. van Saarloos. The complex Ginzburg-Landau equation for beginners. In Spatio-temporal patterns in nonequilibrium complex systems (Santa Fe, NM, 1993), Santa Fe Inst. Stud. Sci. Complexity Proc. XXI, pages 19-31. Addison-Wesley, Reading, MA, 1995.
  30. W. van Saarloos and P. C. Hohenberg. Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations. Physica D, 56(4):303-367, 1992.
  31. M. Yoneyama, A. Fujii, and S. Maeda. Wavelength-doubled spiral fragments in photosensitive monolayers. J. Amer. Chem. Soc., 117:8188-8191, 1995.
  32. K. Zumbrun and P. Howard. Pointwise semigroup methods and stability of viscous shock waves. Indiana Univ. Math. J., 47(3):741-871, 1998.