Academia.eduAcademia.edu

Outline

How Complex Verbs Acquire Their Idiosyncratic Meanings

2023, Language and Speech

https://doi.org/10.1177/00238309231199994

Abstract

Complex verbs with the same preverb/prefix/particle that is both linguistically productive and analyzable can be compositional as well as non-compositional in meaning. For example, the English on has compositional spatial uses (put a hat on) but also a non-spatial "continuative" use, where its semantic contribution is consistent with multiple verbs (we played / worked / talked on despite the interruption). Comparable examples can be given with German preverbs or Russian prefixes, which are the main data analyzed in the present paper. The preverbs/prefixes/particles that encode noncompositional, construction-specific senses have been extensively studied; however, it is still far from clear how their semantic idiosyncrasies arise. Even when one can identify the contribution of the base, it is counterintuitive to assign the remaining sememes to the preverb/prefix/particle part. Therefore, on one hand, there seems to be an element without meaning, and on the other, there is a word sense that apparently comes from nowhere. In this article, I suggest analyzing compositional and non-compositional complex verbs as instantiations of two different types of constructions: one with an open slot for the preverb/prefix/particle and a fixed base verb and another with a fixed preverb/prefix/particle and an open slot for the base verb. Both experimental and corpus evidence supporting this decision is provided for Russian data. I argue that each construction implies its own meaning-processing model and that the actual choice between the two can be predicted by taking into account the discrepancy in probabilities of transition from preverb/prefix/particle to base and from base to preverb/prefix/particle.

References (67)

  1. Amiot, D. (2004). Between compounding and derivation: Elements of word-formation corresponding to prepositions. In W. U. Dressler, D. Kastovsky, O. E. Pfeiffer, & F. Rainer (Eds.), Morphology and its demarcations (pp. 183-213). John Benjamin.
  2. Bannard, C. (2005). Learning about the meaning of verb-particle constructions from corpora. Computer Speech and Language, 19(4), 467-478.
  3. Bergsma, S., Bhargava, A., He, H., & Kondrak, G. (2010). Predicting the semantic compositionality of prefix verbs. In H. Li & L. Márquez (Eds.), Proceedings of the 2010 conference on empirical methods in natu- ral language processing (pp. 293-303). Association for Computational Linguistics.
  4. Biskup, P. (2015). On (non-)compositionality of prefixed verbs. In M. Ziková, P. Caha, & M. Dočekal (Eds.), Slavic languages in the perspective of formal grammar: Proceedings of FDSL 10.5, Brno 2014 (pp. 59-78). Peter Lang.
  5. Biskup, P. (2019). Prepositions, case and verbal prefixes. The case of Slavic. John Benjamins. Blom, C. (2005). Complex predicates in Dutch. LOT.
  6. Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). Enriching word vectors with subword informa- tion [arXiv:1607.04606v2]. https://doi.org/10.48550/arXiv.1607.04606
  7. Boleda, G. (2020). Distributional semantics and linguistic theory. Annual Review of Linguistics, 6, 213-234.
  8. Booij, G. (2010). Construction morphology. Language and Linguistics Compass, 4, 543-555.
  9. Booij, G., & Van Kemenade, A. (2003). Preverbs: An introduction. In: G. Booij & J. Van Marle (Eds.), Yearbook of morphology 2003 (pp. 1-11). Springer, Dordrecht. https://doi.org/10.1007/978-1-4020- 1513-7_1
  10. Bott, S., & Schulte im Walde, S. (2014). Optimizing a distributional semantic model for the prediction of German particle verb compositionality. Proceedings of the Ninth International Conference on Language Resources and Evaluation LREC,' 14(LREC'14), 509-516.
  11. Brems, L. (2003). Measure noun constructions: An instance of semantically-driven grammaticalization. International Journal of Corpus Linguistics, 82(2), 283-312.
  12. Bybee, J. (2010). Language, usage, and cognition. Cambridge University Press.
  13. Cappelle, B. (2005). Particle patterns in English [PhD dissertation, University of Leuven]. https://kulak. kuleuven.be/nl/onderzoek/Onderzoeksdomeinen/language-literature-translation/letteren/onderzoektaal- kunde/fest/descriptiveenglishgrammar/bert-cappelle/bert-cappelle-proefschrift.pdf
  14. Cordeiro, S., Villavicencio, A., Idiart, M., & Ramisch, C. (2019). Unsupervised compositionality prediction of nominal compounds. Computational Linguistics, 45(1), 1-57.
  15. Croft, W. (2001). Radical construction grammar. Syntactic theory in typological perspective. Oxford University Press.
  16. Cuzzolin, P. L., Putzu, I., & Ramat, P. (2006). The Indo-European adverb in diachronic and typological per- spective. Indogermanische Forschungen, 111, 1-38.
  17. Dehé, N., Jackendoff, R., McIntyre, A., & Urban, S. (Eds.). (2002). Verb-particle explorations. Mouton de Gruyter.
  18. Diessel, H. (2019). The grammar network. How linguistic structure is shaped by language use. Cambridge University Press.
  19. Drozd, A., Gladkova, A., & Matsuoka, S. (2016). Word embeddings, analogies, and machine learning: Beyond king-man + woman = queen. In Y. Matsumoto & R. Prasad (Eds.), Proceedings of COLING 2016, the 26th international conference on computational linguistics: Technical papers (pp. 3519-3530). The COLING 2016 Organizing Committee.
  20. Firth, J. R. (1957). A synopsis of linguistic theory 1930-1955. In J. R. Firth (Ed.), Studies in linguistic analy- sis (pp. 1-32). Blackwell.
  21. Fontanals, J. M. (2001). Preverbs in complex denominal verbs: Lexical adjuncts or core predicates? Catalan Working Papers in Linguistics, 9, 37-51.
  22. Goldberg, A. (2006). Constructions at work. The nature of generalization in language. Oxford University Press.
  23. Gries, S., & Stefanowitsch, A. (2004). Extending collostructional analysis. A corpus-based perspective on "alternations." International Journal of Corpus Linguistics, 9(1), 97-129.
  24. Gutierrez, E. D., Shutova, E., Marghetis, T., & Bergen, B. (2016). Literal and metaphorical senses in com- positional distributional semantic models. In K. Erk & N. A. Smith (Eds.), Proceedings of the 54th annual meeting of the association for computational linguistics (Vol. 1, pp. 183-193). Association for Computational Linguistics.
  25. Hamilton, W. L., Leskovec, J., & Jurafsky, D. (2016). Diachronic word embeddings reveal statistical laws of semantic change. In K. Erk & N. A. Smith (Eds.), Proceedings of the 54th annual meeting of the associa- tion for computational linguistics (pp. 1489-1501). Association for Computational Linguistics.
  26. Hay, J. (2001). Lexical frequency in morphology: Is everything relative? Linguistics, 39(6), 1041-1070.
  27. Hay, J. (2003). Causes and consequences of word structure. Routledge.
  28. Hvitfeldt, E., & Silge, J. (2022). Supervised machine learning for text analysis in R. CRC Press.
  29. Iacobini, C. (2009). Phrasal verbs between syntax and lexicon. Rivista di Linguistica, 21(1), 97-117.
  30. Iacobini, C., & Masini, F. (2007). Verb-particle constructions and prefixed verbs in Italian: Typology, dia- chrony and semantics. In G. Booij, L. Ducceschi, B. Fradin, E. Guevara, A. Ralli, & S. Scalise (Eds.), On-line proceedings of the fifth Mediterranean Morphology Meeting (MMM5), Fréjus, 15-18 September 2005 (pp. 157-184), University of Bologna.
  31. Jackendoff, R. (2002). English particle constructions, the lexicon, and the autonomy of syntax. In N. Dehé, R. Jackendoff, A. McIntyre, & S. Urban (Eds.), Verb-particle explorations (pp. 67-94). Mouton de Gruyter.
  32. Jakubíček, M., Kilgarriff, A., Kovář, V., Rychlý, P., & Suchomel, V. (2013). The TenTen corpus family. In A. Hardie & R. Love (Eds.), 7th international corpus linguistics conference CL. Abstract book (pp. 125-127). UCREL.
  33. Köper, M., Scheible, C., Schulte im Walde, S. (2015). Multilingual reliability and "semantic" structure of continuous word spaces. In M. Purver, M. Sadrzadeh, & M. Stone (Eds.), Proceedings of the 11th inter- national conference on computational semantics (pp. 40-45). Queen Mary University of London.
  34. Köper, M., Schulte im Walde, S. (2016). Distinguishing literal and non-literal usage of German particle verbs. In M. Carpuat, M.-C. de Marneffe, & I. Vladimir Meza Ruiz (Eds.), Proceedings of the conference of the North American chapter of the association for computational linguistics: Human language technologies (pp. 353-362). Association for Computational Linguistics.
  35. Krongauz, M. A. (1998). Pristavki i glagoly v russkom jazyke: Semantičeskaja grammatika [Prefixes and verbs in Russian language: Semantic grammar]. Škola -«Jazyki russkoj kuľtury».
  36. Kühnhold, I., & Wellmann, H. (1973). Deutsche Wortbildungstypen und Tendenzen in der Gegenwartssprache, 1 Teil: das Verb [German word formation types and tendencies in contemporary language. Part 1: The verb]. Pädagogischer Verlag Schwamm.
  37. Kutuzov, A., & Kuzmenko, E. (2017). WebVectors: A toolkit for building web interfaces for vector seman- tic models. In D. I. Ignatov, M. Y. Khachay, V. G. Labunets, N. Loukachevitch, S. I. Nikolenko, A. Panchenko, A. V. Savchenko, & K. Vorontsov (Eds.), Analysis of images, social networks and texts, AIST 2016: Vol. 661. Communications in computer and information science (pp. 155-161). Springer.
  38. Langacker, R. (1987). Foundations of cognitive grammar: Theoretical prerequisites (Vol. I). Stanford University Press.
  39. Larsen, D. (2014). Particles and particle-verb constructions in English and other Germanic languages [Dissertation, University of Delaware]. https://udspace.udel.edu/items/f2323297-1eb7-46e1-8e3c-f540aa6c66d9
  40. Laudanna, A. (1999). Regular versus irregular inflection: A question of levels. Behavioral and Brain Sciences, 22(6), 1028-1029.
  41. Levy, O., & Goldberg, Y. (2014). Dependency-based word embeddings. In K. Toutanova & H. Wu (Eds.), Proceedings of the 52nd annual meeting of the association for computational linguistics (volume 2: Short papers) (pp. 302-308). Association for Computational Linguistics. https://www.aclweb.org/ anthology/P14-2050
  42. Lin, C.-C., Ammar, W., Dyer, C., & Levin, L. (2015). Unsupervised POS induction with word embeddings. In R. Mihalcea, J. Chai, & A. Sarkar (Eds.), Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies (pp. 1311-1316). Association for Computational Linguistics.
  43. McIntyre, A. (2001). Argument blockages induced by verb particles in English and German: Event modifi- cation and secondary predication. In N. Dehé & A. Wanner (Eds.), Structural aspects of semantically complex verbs (pp. 131-164). Germanistik Online Datenbank. https://www.degruyter.com/database/ GERMANISTIK/entry/ogerm.ga02144014_3/html
  44. McIntyre, A. (2002). Idiosyncrasy in particle verbs. In N. Dehé, R. Jackendoff, A. McIntyre, & S. Urban (Eds.), Verb-particle explorations (pp. 95-118). Mouton de Gruyter.
  45. McIntyre, A. (2007). Particle verbs and argument structure. Language and Linguistics Compass, 1(4), 350-367.
  46. McIntyre, A. (2015). Denominal verbs: An overview. In S. Olsen, P. Müller, I. Ohnheiser, & F. Rainer (Eds.), Word-formation: An international handbook of the languages of Europe (pp. 434-450). Mouton de Gruyter.
  47. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013, May 2-4). Efficient estimation of word representa- tions in vector space [Conference session]. Workshop Track Proceedings: 1st International Conference on Learning Representations, ICLR 2013, Scottsdale, AZ, United States. http://arxiv.org/abs/1301.3781
  48. Monakhov, S. (2021). Russian prefixed verbs as constructional schemas. Russian Linguistics, 45, 45-73.
  49. Pennington, J., Socher, R., & Manning, C. (2014). GloVe: Global vectors for word representation. In A. Moschitti, B. Pang, & W. Daelemans (Eds.), Proceedings of the 2014 conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 1532-1543). Association for Computational Linguistics.
  50. Petre, P., & Cuyckens, H. (2008). Bedusted, yet not beheaded: The role of be-'s constructional properties in its conservation. In A. Bergs, & G. Diewald (Eds.), Constructions and language change (pp. 133-169). Mouton de Gruyter.
  51. Rehurek, R., & Sojka, P. (2011). Gensim-Python framework for vector space modeling. NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic, 3(2), 2.
  52. Rousseau, A. (Ed.). (1995). Les préverbes dans les langues d'Europe: Introduction à l'étude de la préver- bation [Preverbs in the languages of Europe: Introduction to the study of preverbation]. Presses Universitaires du Septentrion.
  53. Rychlý, P. (2008). A lexicographer-friendly association score. In P. Sojka & A. Horák (Eds.), Proceedings of recent advances in slavonic natural language processing, RASLAN2008 (pp. 6-9). Masaryk University.
  54. Schlechtweg, D., Eckmann, S., Santus, E., Schulte im Walde, S., & Hole, D. (2017). German in flux: Detecting metaphoric change via word entropy. In R. Levy & L. Specia (Eds.), Proceedings of the 21st conference on computational natural language learning (pp. 354-367). Association for Computational Linguistics.
  55. Shvedova, N. (Ed.). (1980). Russkaya Grammatika [Russian grammar].
  56. Nauka.
  57. Spencer, A., & Zaretskaya, M. (1998). Verb prefixation in Russian as lexical subordination. Linguistics, 36, 1-40.
  58. Stiebels, B. (1996). Lexikalische Argumente und Adjunkte: Zum semantischen Beitrag von verbalen Präfixen und Partikeln [Lexical arguments and adjuncts: On the semantic contribution of verbal prefixes and particles]. Akademie Verlag. https://doi.org/10.1515/9783050072319
  59. Stiebels, B. (1998). Complex denominal verbs in German and the morphology-semantics interface. In G. Booij & J. Van Marle (Eds.), Yearbook of morphology 1997 (pp. 265-302). Springer. https://doi. org/10.1007/978-94-011-4998-3_10
  60. Taylor, J. (2012). The mental corpus: How language is represented in the mind. Oxford University Press.
  61. Tikhonov, A. (1985). Slovoobrazovatel'ny slovar russkogo jazyka [Word-formation dictionary of Russian language].
  62. Russkij Jazyk.
  63. Turney, P. D., Neuman, Y., Assaf, D., & Cohen, Y. (2011). Literal and metaphorical sense identification through concrete and abstract context. In R. Barzilay & M. Johnson (Eds.), Proceedings of the confer- ence on empirical methods in natural language processing (pp. 680-690). Association for Computational Linguistics.
  64. Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of Artificial Intelligence Research, 37, 141-188.
  65. Vincent, N. (1999). The evolution of C-structure: Prepositions and PPs from Indo-European to Romance. Linguistics, 37(6), 1111-1153.
  66. Wang, S., Durrett, G., & Erk, K. (2018). Modeling semantic plausibility by injecting world knowledge. In M. Walker, H. Ji, & A. Stent (Eds.), Proceedings of the conference of the North American chapter of the association for computational linguistics: Human Language Technologies (pp. 303-308). Association for Computational Linguistics.
  67. Zeller, J. (2001). Particle verbs and local domains. John Benjamins.