ACTOR RETRIEVAL SYSTEM BASED ON KERNELS ON BAGS OF BAGS
https://doi.org/10.5281/ZENODO.41177Abstract
In the domain of multimedia, rapid DVD browsing or multimedia oriented web search require an efficient contentbased image and video retrieval system. In this paper, we present our retrieval system of actors in films combining powerful machine learning techniques with "kernels on bags of bags" design. From a film segmented into shots, we extract video-tubes of actor faces and represent these video objects with sets of temporally coherent features. These visual features are then input in the kernel-based SVM retrieval system. Our approach has been tested on retrieving actors in a real film and proved its efficiency.
References (18)
- O. Arandjelovic, A. Zisserman, "Automatic Face Recognition for Film Character Retrieval in Feature-Length Films", Proc. of IEEE CIVR, 2005.
- J. Sivic, M. Everingham, and A. Zisserman, "Person spotting: video shot retrieval for face sets", Proc. of IEEE CIVR, 2005.
- R. Kondor and T. Jebara. "A kernel between sets of vectors", In Interna- tional Conference on Machine Learning (ICML), 2003
- P.H. Gosselin, M. Cord and S. Philipp-Foliguet. "Kernel on Bags for multi-object database retrieval", In ACM International Conference on Image and Video Retrieval, Amsterdam, The Netherlands, July 2007.
- J. Shawe-Taylor and N. Cristianini. "Kernel methods for Pattern Analy- sis", Cambridge University Press, ISBN 0-521-81397-2, 2004.
- C. Wallraven, B. Caputo, and A. Graf. "Recognition with local features: the kernel recipe", In International Conference on Computer Vision (ICCV), volume 2, pages 257-264, 2003.
- P. Viola, M. Jones, "Rapid Object Detection using a Boosted Cascade of Simple Features", CVPR 2001.
- S. Lyu. "Mercer kernels for object recognition with local features", In IEEE CVPR, San Diego, CA, 2005.
- D. Lowe. "Distinctive Image Features from Scale-Invariant Keypoints", IJCV, 2004.
- Yang M H, Kriegman D, Ahuja N. "Detecting faces in images: A sur- vey", IEEE Trans on PAMI, 2002, 24(1):34-58.
- E. Casiraghi, Raffaella Lanzarotti, Giuseppe Lipori, "A face detection system based on color and support vector machines", Springer Berlin / Hei- delberg, Volume 2859, 2003 pages 113-120
- Chen, J. Shan, S. Yang, P. Yan, S. Chen, X. Gao, W., "Novel Face Detection Method Based on Gabor Features", Springer Berlin / Heidelberg, 2004, ISSU 3338, pages 90-99.
- R. Lienhart, A. Kuranov, V. Pisarevsky, "Empirical Analysis of Detec- tion Cascades of Boosted Classifiers for Rapid Object Detection", MRL Technical Report, May 2002.
- W. Zhao, R. Chellappa, A. Rosenfeld, P.J. Phillips, "Face Recognition: A Literature Survey", ACM Computing Surveys, 2003, pp. 399-458.
- G. Camara Chavez, F. Precioso, M. Cord, S. Philipp-Foliguet, A. de Albuquerque Araujo, "Shot boundary detection by a hierarchical supervised approach", IEEE IWSSIP, 2007.
- P.H. Gosselin, M. Cord and S. Philipp-Foliguet. "Kernel on Bags of Fuzzy Regions for fast object retrieval", In IEEE ICIP, San Antonio, Texas, USA, September 2007.
- N. Cristianini and J. Shawe-Taylor. "An introduction to Support Vector Machines and other kernel-based learning methods", Cambridge University Press, ISBN 0-521-78019-5, 2000.
- P.H. Gosselin, M. Cord, S. Philipp-Foliguet, "Combining visual diction- ary, kernel-based similarity and learning strategy for image category re- trieval", CVIU, in press, 2008.