Academia.eduAcademia.edu

Outline

Topic Modeling: Perspectives From a Literature Review

IEEE Access

https://doi.org/10.1109/ACCESS.2022.3232939

Abstract

Topic modeling is a Natural Language Processing technique that has gained popularity over the last ten years, with applications in multiple fields of knowledge. However, there is insufficient empirical evidence to show how this field of study has developed over the years, as well as the main models that have been applied in different contexts. The objective of this paper is to analyze the evolution of the topic modeling technique, the main areas in which it has been applied, and the models that are recommended for specific types of data. The methodology applied is based on bibliometric analysis. First, we searched the Web of Science and the Scopus databases. We then used scientometric techniques and a Tree of Science methodology, which allowed us to analyze the search results from the perspectives of classics, structure, and trends. The results show that the USA and China are among the most productive countries in this field and the applications have been mainly in the identification of sub-topics in short texts, such as social networks and blogs. The main conclusion of this work is that topic modeling is a versatile technique that can complement systematic literature reviews and that has been well-received in different academic and research contexts. The results of this study will help researchers and academics to recognize the importance of these techniques for reviewing large volumes of unstructured information, such as research articles, and in general, for systematic literature reviews. INDEX TERMS Literature review, machine learning, natural language processing, scientometrics, topic modeling.

References (114)

  1. L. Rossetto, R. Gasser, S. Heller, M. A. Parian, and H. Schuldt, ''Retrieval of structured and unstructured data with vitrivr,'' in Proc. ACM Workshop Lifelog Search Challenge, Ottawa ON, Canada, Jun. 2019, pp. 27-31, doi: 10.1145/3326460.3329160.
  2. P. Lisena, I. Harrando, O. Kandakji, and R. Troncy, ''TOMODAPI: A topic modeling API to train, use and compare topic models,'' in Proc. 2nd
  3. Workshop NLP Open Source Softw. (NLP-OSS), 2020, pp. 132-140, doi: 10.18653/v1/2020.nlposs-1.19.
  4. T. Luostarinen and O. Kohonen, ''Using topic models in content- based news recommender systems,'' in Proc. 19th Nordic Conf. Com- put. Linguistics (NODALIDA), 2013, pp. 239-251. [Online]. Available: https://www.aclweb.org/anthology/W13-5622.pdf
  5. B. V. Barde and A. M. Bainwad, ''An overview of topic modeling methods and tools,'' in Proc. Int. Conf. Intell. Comput. Control Syst. (ICICCS), Jun. 2017, pp. 745-750, doi: 10.1109/ICCONS.2017.8250563.
  6. P. Kherwa and P. Bansal, ''Topic modeling: A comprehensive review,'' ICST Trans. Scalable Inf. Syst., vol. 7, no. 24, Jul. 2018, Art. no. 159623, doi: 10.4108/eai.13-7-2018.159623.
  7. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, ''Indexing by latent semantic analysis,'' J. Amer. Soc. Inf. Sci., vol. 41, no. 6, pp. 391-407, 1990, doi: 10.1002/(SICI)1097- 4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9.
  8. J. Qiang, P. Chen, T. Wang, and X. Wu, ''Topic modeling over short texts by incorporating word embeddings,'' in Advances in Knowledge Discovery and Data Mining. Cham, Switzerland: Springer, 2017, pp. 363-374, doi: 10.1007/978-3-319-57529-2_29.
  9. D. M. Blei, A. Y. Ng, and M. I. Jordan, ''Latent Dirichlet allocation,'' J. Mach. Learn. Res., vol. 3, pp. 993-1022, Mar. 2003. [Online]. Available: https://www.jmlr.org/papers/volume3/blei03a/ blei03a.pdf?ref=https://githubhelp.com
  10. X. Li and L. Lei, ''A bibliometric analysis of topic modelling studies (2000-2017),'' J. Inf. Sci., vol. 47, no. 2, pp. 161-175, Apr. 2021, doi: 10.1177/0165551519877049.
  11. C. Li, H. Wang, Z. Zhang, A. Sun, and Z. Ma, ''Topic modeling for short texts with auxiliary word embeddings,'' in Proc. 39th Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Pisa, Italy, Jul. 2016, pp. 165-174, doi: 10.1145/2911451.2911499.
  12. J. Hou, X. Yang, and C. Chen, ''Emerging trends and new developments in information science: A document co-citation analysis (2009-2016),'' Sci- entometrics, vol. 115, no. 2, pp. 869-892, May 2018, doi: 10.1007/s11192- 018-2695-9.
  13. T. D. Marín-Velásquez and D. D. J. Arrojas-Tocuyo, ''Revistas científicas de América latina y el caribe en SciELO, scopus y web of science en el área de ingeniería y tecnología: Su relación con variables socioeconómicas,'' Revista Española de Documentación Científica, vol. 44, no. 3, p. e301, Jul. 2021, doi: 10.3989/redc.2021.3.1812.
  14. J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, ''Software tools for conducting bibliometric analysis in science: An up-to-date review,'' El Profesional de la Información, vol. 29, no. 1, pp. 1-20, Jan. 2020, doi: 10.3145/epi.2020.ene.03.
  15. M. Aria and C. Cuccurullo, ''Bibliometrix : An R-tool for comprehensive science mapping analysis,'' J. Informetrics, vol. 11, no. 4, pp. 959-975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
  16. J. L. Belmonte, A. Segura-Robles, A.-J. Moreno-Guerrero, and M. E. Parra-González, ''Machine learning and big data in the impact literature. A bibliometric review with scientific mapping in web of science,'' Symmetry, vol. 12, no. 4, p. 495, Mar. 2020, doi: 10.3390/sym12040495.
  17. L. Leydesdorff, A. Tekles, and L. Bornmann, ''A proposal to revise the disruption index,'' Profesional De La Información, vol. 30, pp. 1-6, Feb. 2021, doi: 10.3145/epi.2021.ene.21.
  18. H. A. Al-Jamimi, G. M. BinMakhashen, and L. Bornmann, ''Use of bibliometrics for research evaluation in emerging markets economies: A review and discussion of bibliometric indicators,'' Scientometrics, vol. 127, no. 10, pp. 5879-5930, Oct. 2022, doi: 10.1007/s11192-022- 04490-8.
  19. V. A. Hurtado-Marín, J. D. Agudelo-Giraldo, S. Robledo, and E. Restrepo-Parra, ''Analysis of dynamic networks based on the ising model for the case of study of co-authorship of scientific articles,'' Sci. Rep., vol. 11, no. 1, p. 5721, Mar. 2021, doi: 10.1038/s41598-021-85041-8.
  20. B. Si, Y. Liang, J. Zhao, Y. Zhang, X. Liao, H. Jin, H. Liu, and L. Gu, ''GGraph: An efficient structure-aware approach for iterative graph processing,'' IEEE Trans. Big Data, vol. 8, no. 5, pp. 1182-1194, Oct. 2022, doi: 10.1109/TBDATA.2020.3019641.
  21. M. Bastian, S. Heymann, and M. Jacomy. (2009). Gephi: An Open Source Software for Exploring and Manipulating Networks. [Online]. Available: https://www.aaai.org/ocs/index.php/ICWSM/09/paper/viewPaper/154
  22. D. S. Valencia-Hernandez, S. Robledo, R. Pinilla, N. D. Duque-Méndez, and G. Olivar-Tost, ''SAP algorithm for citation analysis: An improvement to tree of science,'' Ingeniería e Investigación, vol. 40, no. 1, pp. 45-49, Jan. 2020, doi: 10.15446/ing.investig.v40n1.77718.
  23. V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, ''Fast unfolding of communities in large networks,'' J. Stat. Mech., Theory Exp., vol. 2008, no. 10, Oct. 2008, Art. no. P10008, doi: 10.1088/1742- 5468/2008/10/P10008.
  24. J. Zhang and Y. Luo, ''Degree centrality, betweenness centrality, and close- ness centrality in social network,'' in Proc. 2nd Int. Conf. Model., Simul. Appl. Math. (MSAM), vol. 132, 2017, pp. 300-303, doi: 10.2991/msam- 17.2017.68.
  25. M. Zuluaga, S. Robledo, O. Arbelaez-Echeverri, G. A. Osorio-Zuluaga, and N. Duque-Méndez, ''Tree of science-ToS: A web-based tool for scientific literature recommendation. Search less, research more!'' Issues Sci. Technol. Librarianship, vol. 100, no. 100, pp. 1-10, Aug. 2022, doi: 10.29173/istl2696.
  26. S. Robledo, M. Zuluaga, L.-A. Valencia-Hernandez,
  27. O. A.-E. Arbelaez-Echeverri, P. Duque, and J.-D. Alzate-Cardona, ''Tree of science with scopus: A shiny application,'' Issues Sci.
  28. Technol. Librarianship, vol. 100, no. 100, pp. 1-7, Aug. 2022, doi: 10.29173/istl2698.
  29. S. Robledo, A. M. G. Aguirre, M. Hughes, and F. Eggers, '''Hasta la vista, baby'-Will machine learning terminate human literature reviews in entrepreneurship?'' J. Small Bus. Manag., pp. 1-30, Aug. 2021, doi: 10.1080/00472778.2021.1955125.
  30. J. A. Vivares, W. Sarache, and J. E. Hurtado, ''A maturity assessment model for manufacturing systems,'' J. Manuf. Technol. Manag., vol. 29, no. 5, pp. 746-767, May 2018, doi: 10.1108/JMTM-07-2017-0142.
  31. P. Duque and L.-S. Cervantes-Cervantes, ''Responsabilidad social universitaria: Una revisión sistemática y análisis bibliométrico,'' Estudios Gerenciales, vol. 35, pp. 451-464, Dec. 2019, doi: 10.18046/j.estger.2019.153.3389.
  32. P. Duque-Hurtado, V. Samboni-Rodriguez, M. Castro-Garcia, L. A. Montoya-Restrepo, and I. A. Montoya-Restrepo, ''Neuromarketing: Its current status and research perspectives,'' Estudios Gerenciales, vol. 36, pp. 525-539, Nov. 2020, doi: 10.18046/j.estger.2020.157.3890.
  33. F. Eggers, H. Risselada, T. Niemand, and S. Robledo, ''Referral campaigns for software startups: The impact of network characteristics on product adoption,'' J. Bus. Res., vol. 145, pp. 309-324, Jun. 2022, doi: 10.1016/j.jbusres.2022.03.007.
  34. L. Sun, L. Wu, and P. Qi, ''Global characteristics and trends of research on industrial structure and carbon emissions: A bibliometric analysis,'' Environ. Sci. Pollut. Res., vol. 27, no. 36, pp. 44892-44905, Dec. 2020, doi: 10.1007/s11356-020-10915-9.
  35. C. Wang and D. M. Blei, ''Collaborative topic modeling for recommending scientific articles,'' in Proc. 17th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, San Diego, CA, USA, 2011, pp. 448-456, doi: 10.1145/2020408.2020480.
  36. X. Chen, ''Does cross-field influence regional and field-specific distribu- tions of highly cited researchers?'' Scientometrics, pp. 1-16, Nov. 2022, doi: 10.1007/s11192-022-04584-3.
  37. C. Zanardello, ''Market forces in Italian academia today (and yesterday),'' Scientometrics, Nov. 2022. [Online]. Available: https://link.springer.com/journal/11192/online-first?page=2, doi: 10.1007/ s11192-022-04579-0.
  38. Q. Fu, Y. Zhuang, J. Gu, Y. Zhu, and X. Guo, ''Agreeing to disagree: Choosing among eight topic-modeling methods,'' Big Data Res., vol. 23, Feb. 2021, Art. no. 100173, doi: 10.1016/j.bdr.2020.100173.
  39. J. Tang, R. Jin, and J. Zhang, ''A topic modeling approach and its integration into the random walk framework for academic search,'' in Proc. 8th IEEE Int. Conf. Data Mining, Dec. 2008, pp. 1055-1060, doi: 10.1109/ICDM.2008.71.
  40. F. Wang, J. L. Zhang, Y. Li, K. Deng, and J. S. Liu, ''Bayesian text classification and summarization via a class-specified topic model,'' J. Mach. Learn. Res., vol. 22, no. 89, pp. 1-48, 2021. [Online]. Available: https://www.jmlr.org/papers/volume22/18-332/18-332.pdf
  41. R. Vangara, E. Skau, G. Chennupati, H. Djidjev, T. Tierney, J. P. Smith, M. Bhattarai, V. G. Stanev, and B. S. Alexandrov, ''Semantic nonnegative matrix factorization with automatic model determination for topic modeling,'' in Proc. 19th IEEE Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2020, pp. 328-335, doi: 10.1109/ICMLA51294.2020.00060.
  42. D. Greene and J. P. Cross, ''Exploring the political agenda of the European parliament using a dynamic topic modeling approach,'' Political Anal., vol. 25, no. 1, pp. 77-94, Jan. 2017, doi: 10.1017/pan.2016.7.
  43. J. Grimmer and B. M. Stewart, ''Text as data: The promise and pitfalls of automatic content analysis methods for political texts,'' Political Anal., vol. 21, no. 3, pp. 267-297, 2013, doi: 10.1093/pan/mps028.
  44. A. Lesnikowski, E. Belfer, E. Rodman, J. Smith, R. Biesbroek, J. D. Wilkerson, J. D. Ford, and L. Berrang-Ford, ''Frontiers in data analytics for adaptation research: Topic modeling,'' WIREs Climate Change, vol. 10, no. 3, p. e576, May 2019, doi: 10.1002/wcc.576.
  45. M. Mustak, J. Salminen, L. Plé, and J. Wirtz, ''Artificial intel- ligence in marketing: Topic modeling, scientometric analysis, and research agenda,'' J. Bus. Res., vol. 124, pp. 389-404, Jan. 2021, doi: 10.1016/j.jbusres.2020.10.044.
  46. J. H. Ryoo, X. Wang, and S. Lu, ''Do spoilers really spoil? Using topic modeling to measure the effect of spoiler reviews on box office revenue,'' J. Marketing, vol. 85, no. 2, pp. 70-88, Mar. 2021, doi: 10.1177/0022242920937703.
  47. X. Chen, D. Zou, G. Cheng, and H. Xie, ''Detecting latent topics and trends in educational technologies over four decades using struc- tural topic modeling: A retrospective of all volumes of computers & education,'' Comput. Educ., vol. 151, Jul. 2020, Art. no. 103855, doi: 10.1016/j.compedu.2020.103855.
  48. X. Chen, D. Zou, and H. Xie, ''Fifty years of British journal of edu- cational technology : A topic modeling based bibliometric perspective,'' Brit. J. Educ. Technol., vol. 51, no. 3, pp. 692-708, May 2020, doi: 10.1111/bjet.12907.
  49. X. Li, Y. Wang, A. Zhang, C. Li, J. Chi, and J. Ouyang, ''Filtering out the noise in short text topic modeling,'' Inf. Sci., vol. 456, pp. 83-96, Aug. 2018, doi: 10.1016/j.ins.2018.04.071.
  50. C. Jaegul, L. Changhyun, C. K. Reddy, and P. Haesun, ''Utopian: User-driven topic modeling based on interactive nonnegative matrix factorization,'' IEEE Trans. Vis. Comput. Graphics, vol. 19, no. 12, pp. 1992-2001, Dec. 2013, doi: 10.1109/TVCG.2013.212.
  51. H. Bisgin, Z. Liu, H. Fang, X. Xu, and W. Tong, ''Mining FDA drug labels using an unsupervised learning technique-topic modeling,'' BMC Bioinf., vol. 12, no. 10, pp. 1-8, Oct. 2011, doi: 10.1186/1471-2105-12-S10-S11.
  52. X. Li, C. Li, J. Chi, and J. Ouyang, ''Short text topic modeling by exploring original documents,'' Knowl. Inf. Syst., vol. 56, no. 2, pp. 443-462, 2018, doi: 10.1007/s10115-017-1099-0.
  53. Z. Huang, X. Xu, J. Ni, H. Zhu, and C. Wang, ''Multimodal repre- sentation learning for recommendation in Internet of Things,'' IEEE Internet Things J., vol. 6, no. 6, pp. 10675-10685, Dec. 2019, doi: 10.1109/JIOT.2019.2940709.
  54. X. Li, J. Ouyang, and X. Zhou, ''Supervised topic models for multi-label classification,'' Neurocomputing, vol. 149, pp. 811-819, Feb. 2015, doi: 10.1016/j.neucom.2014.07.053.
  55. Y. T. Zhuang, Y. F. Wang, F. Wu, Y. Zhang, and W. M. Lu. (Jun. 2013). Supervised Coupled Dictionary Learning With Group Structures for Multi- Modal Retrieval. Accessed: Dec. 7, 2021. [Online]. Available: https:// www.aaai.org/ocs/index.php/AAAI/AAAI13/paper/viewPaper/6323
  56. H. Wang, F. Wu, W. Lu, Y. Yang, X. Li, X. Li, and Y. Zhuang, ''Identifying objective and subjective words via topic modeling,'' IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 718-730, Mar. 2018, doi: 10.1109/TNNLS.2016.2626379.
  57. D. Durán-Aranguren, S. Robledo, E. Gomez-Restrepo, J. A. Valencia, and N. Tarazona, ''Scientometric overview of coffee by-products and their applications,'' Molecules, vol. 26, no. 24, p. 7605, Dec. 2021, doi: 10.3390/molecules26247605.
  58. X. Li, J. Ouyang, Y. Lu, X. Zhou, and T. Tian, ''Group topic model: Organizing topics into groups,'' Inf. Retr. J., vol. 18, no. 1, pp. 1-25, Feb. 2015, doi: 10.1007/s10791-014-9244-9.
  59. X. Li, Y. Wang, J. Ouyang, and M. Wang, ''Topic extraction from extremely short texts with variational manifold regularization,'' Mach. Learn., vol. 110, no. 5, pp. 1029-1066, May 2021, doi: 10.1007/s10994- 021-05962-3.
  60. J. Chi, J. Ouyang, C. Li, X. Dong, X. Li, and X. Wang, ''Topic representation: Finding more representative words in topic mod- els,'' Pattern Recognit. Lett., vol. 123, pp. 53-60, May 2019, doi: 10.1016/j.patrec.2019.01.018.
  61. L. D. C. S. Subhashini, Y. Li, J. Zhang, A. S. Atukorale, and Y. Wu, ''Mining and classifying customer reviews: A survey,'' Artif. Intell. Rev., vol. 54, no. 8, pp. 6343-6389, Dec. 2021, doi: 10.1007/s10462-021-09955- 5.
  62. S. Kim, H. Park, and J. Lee, ''Word2vec-based latent semantic analysis (W2 V-LSA) for topic modeling: A study on blockchain technology trend analysis,'' Exp. Syst. Appl., vol. 152, Aug. 2020, Art. no. 113401, doi: 10.1016/j.eswa.2020.113401.
  63. T. Ha, B. Beijnon, S. Kim, S. Lee, and J. H. Kim, ''Examining user perceptions of smartwatch through dynamic topic modeling,'' Telematics Informat., vol. 34, no. 7, pp. 1262-1273, Nov. 2017, doi: 10.1016/j.tele.2017.05.011.
  64. Y. Im, J. Park, M. Kim, and K. Park, ''Comparative study on perceived trust of topic modeling based on affective level of educational text,'' Appl. Sci., vol. 9, no. 21, p. 4565, Oct. 2019, doi: 10.3390/app9214565.
  65. J. Lee, Y. Kim, E. Kwak, and S. Park, ''A study on research trends for gestational diabetes mellitus and breastfeeding: Focusing on text network analysis and topic modeling,'' J. Korean Academic Soc. Nursing Educ., vol. 27, no. 2, pp. 175-185, May 2021, doi: 10.5977/jkasne.2021.27.2.175.
  66. D. M. Blei and J. D. Lafferty, ''Dynamic topic models,'' in Proc. 23rd Int. Conf. Mach. Learn. (ICML), Pennsylvania, PA, USA, 2006, pp. 113-120, doi: 10.1145/1143844.1143859.
  67. D. Mimno, M. Hoffman, and D. Blei, ''Sparse stochastic inference for latent Dirichlet allocation,'' 2012, arXiv:1206.6425.
  68. D. M. Blei and P. Smyth, ''Science and data science,'' Proc. Nat. Acad. Sci. USA, vol. 114, no. 33, pp. 8689-8692, Aug. 2017, doi: 10.1073/pnas.1702076114.
  69. W. Li, D. Blei, and A. McCallum, ''Nonparametric Bayes pachinko allocation,'' 2012, arXiv:1206.5270.
  70. T. Hofmann, ''Probabilistic latent semantic indexing,'' in Proc. 22nd Annu. Int. ACM SIGIR Conf. Res. Develop. Inf. Retr. (SIGIR), 1999, pp. 50-57, doi: 10.1145/312624.312649.
  71. T. L. Griffiths and M. Steyvers, ''Finding scientific topics,'' Proc. Nat. Acad. Sci. USA, vol. 101, no. 1, pp. 5228-5235, 2004, doi: 10.1073/pnas.0307752101.
  72. J. Chang and D. M. Blei, ''Relational topic models for document networks,'' J. Mach. Learn. Res., vol. 5, pp. 81-88, Apr. 2009. [Online]. Available: https://proceedings.mlr.press/v5/chang09a.html
  73. X. Cheng, X. Yan, Y. Lan, and J. Guo, ''BTM: Topic modeling over short texts,'' IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 2928-2941, Dec. 2014, doi: 10.1109/TKDE.2014.2313872.
  74. P. Bicalho, M. Pita, G. Pedrosa, A. Lacerda, and G. L. Pappa, ''A general framework to expand short text for topic modeling,'' Inf. Sci., vol. 393, pp. 66-81, Jul. 2017, doi: 10.1016/j.ins.2017.02.007.
  75. A. Daud, J. Li, L. Zhou, and F. Muhammad, ''Temporal expert finding through generalized time topic modeling,'' Knowl.-Based Syst., vol. 23, no. 6, pp. 615-625, Aug. 2010, doi: 10.1016/j.knosys.2010.04.008.
  76. A. R. Alharbi, M. Hijji, and A. Aljaedi, ''Enhancing topic clustering for Arabic security news based on K-means and topic modelling,'' IET Netw., vol. 10, no. 6, pp. 278-294, Nov. 2021, doi: 10.1049/ntw2.12017.
  77. R. Alfred, L. Y. Jie, J. H. Obit, Y. Lim, H. Haviluddin, and A. Azman, ''Social media mining: A genetic based multiobjective clustering approach to topic modelling,'' IAENG Int. J. Comput. Sci., vol. 48, no. 1, pp. 32-42, 2021. [Online]. Available: http://www.iaeng.org/IJCS/ issues_v48/issue_1/IJCS_48_1_04.pdf
  78. L. Li, Q. Zhang, X. Wang, J. Zhang, T. Wang, T. L. Gao, W. Duan, K. K. F. Tsoi, and F. Y. Wang, ''Characterizing the propagation of situational information in social media during COVID-19 epidemic: A case study on Weibo,'' IEEE Trans. Computat. Social Syst., vol. 7, no. 2, pp. 556-562, Apr. 2020, doi: 10.1109/TCSS.2020.2980007.
  79. E. Del Gobbo, S. Fontanella, A. Sarra, and L. Fontanella, ''Emerging topics in Brexit debate on Twitter around the deadlines,'' Social Indicators Res., vol. 156, nos. 2-3, pp. 669-688, Aug. 2021, doi: 10.1007/s11205-020- 02442-4.
  80. M. M. Zhang, X. Wang, and Y. Hu, ''Strategic framing matters but varies: A structural topic modeling approach to analyzing China's foreign propa- ganda about the 2019 Hong Kong protests on Twitter,'' Social Sci. Comput. Rev., vol. 41, pp. 265-285, Sep. 2021, doi: 10.1177/08944393211042575.
  81. S. Xu and Y. Xiong, ''Setting socially mediated engagement parameters: A topic modeling and text analytic approach to examining polarized discourses on Gillette's campaign,'' Public Relations Rev., vol. 46, no. 5, Dec. 2020, Art. no. 101959, doi: 10.1016/j.pubrev.2020.101959.
  82. S. Jiang, P. Wang, P. L. Liu, A. Ngien, and X. Wu, ''Social media communication about HPV vaccine in China: A study using topic modeling and survey,'' Health Commun., pp. 1-12, Sep. 2021, doi: 10.1080/10410236.2021.1983338.
  83. A. Törnberg and P. Törnberg, ''Muslims in social media discourse: Combining topic modeling and critical discourse analysis,'' Discourse, Context Media, vol. 13, pp. 132-142, Sep. 2016, doi: 10.1016/j.dcm.2016. 04.003.
  84. C. Mai, X. Qiu, K. Luo, M. Chen, B. Zhao, and Y. Huang, ''TSSE-DMM: Topic modeling for short texts based on topic subdivision and semantic enhancement,'' in Advances in Knowledge Discovery and Data Mining. Cham, Switzerland: Springer, 2021, pp. 640-651, doi: 10.1007/978-3-030- 75765-6_51.
  85. F. Steuber, M. Schoenfeld, and G. D. Rodosek, ''Topic modeling of short texts using anchor words,'' in Proc. 10th Int. Conf. Web Intell., Mining Semantics, Jun. 2020, pp. 210-219, doi: 10.1145/3405962.3405968.
  86. F. Zhang, W. Gao, Y. Fang, and B. Zhang, ''Enhancing short text topic modeling with FastText embeddings,'' in Proc. Int. Conf. Big Data, Artif. Intell. Internet Things Eng. (ICBAIE), Jun. 2020, pp. 255-259, doi: 10.1109/ICBAIE49996.2020.00060.
  87. L. Lin, H. Jiang, and Y. Rao, ''Copula guided neural topic modelling for short texts,'' in Proc. 43rd Int. ACM SIGIR Conf. Res. Develop. Inf. Retr., Jul. 2020, pp. 1773-1776, doi: 10.1145/3397271.3401245.
  88. J. He, L. Li, Y. Wang, and X. Wu, ''Targeted aspects oriented topic modeling for short texts,'' Int. J. Speech Technol., vol. 50, no. 8, pp. 2384-2399, Aug. 2020, doi: 10.1007/s10489-020-01672-w.
  89. H.-Y. Lu, L.-Y. Xie, N. Kang, C.-J. Wang, and J.-Y. Xie, ''Don't forget the quantifiable relationship between words: Using recurrent neural network for short text topic discovery,'' in Proc. 31st AAAI Conf. Artif. Intell., Feb. 2017, vol. 31, no. 1, pp. 1192-1198. [Online]. Available: https://ojs.aaai.org/index.php/AAAI/article/view/10670
  90. L. Singh, S. Bansal, L. Bode, C. Budak, G. Chi, K. Kawintiranon, C. Padden, R. Vanarsdall, E. Vraga, and Y. Wang, ''A first look at COVID-19 information and misinformation sharing on Twitter,'' 2020, arXiv:2003.13907.
  91. D. C. Stokes, A. Andy, S. C. Guntuku, L. H. Ungar, and R. M. Merchant, ''Public priorities and concerns regarding COVID-19 in an online discussion forum: Longitudinal topic modeling,'' J. Gen. Internal Med., vol. 35, no. 7, pp. 2244-2247, Jul. 2020, doi: 10.1007/s11606-020- 05889-w.
  92. C. Ordun, S. Purushotham, and E. Raff, ''Exploratory analysis of COVID-19 tweets using topic modeling, UMAP, and DiGraphs,'' 2020, arXiv:2005.03082.
  93. S. Chekijian, H. Li, and S. Fodeh, ''Emergency care and the patient experience: Using sentiment analysis and topic modeling to understand the impact of the COVID-19 pandemic,'' Health Technol., vol. 11, pp. 1073-1082, Aug. 2021, doi: 10.1007/s12553-021-00585-z.
  94. P. Ma, Q. Zeng-Treitler, and S. J. Nelson, ''Use of two topic modeling methods to investigate COVID vaccine hesitancy,'' in Proc. 14th
  95. Int. Conf. (ICT), Soc. Hum. Beings, ICT, 18th Int. Conf. Web Based Communities Social Media, (WBC), 13th Int. Conf. e-Health, EH- Held 15th Multi-Conf. Comput. Sci. Inf. Syst. (MCCSIS), 2021, pp. 221-226. [Online]. Available: https://www.ict-conf.org/wp- content/uploads/2021/07/04_202106C030_Ma.pdf
  96. Y. Wang, M. Shi, and J. Zhang, ''What public health campaigns can learn from people's Twitter reactions on mask-wearing and COVID-19 vaccines: A topic modeling approach,'' Cogent Social Sci., vol. 7, no. 1, Jan. 2021, Art. no. 1959728, doi: 10.1080/23311886.2021.1959728.
  97. Y. Guo, S. J. Barnes, and Q. Jia, ''Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent Dirichlet allocation,'' Tourism Manag., vol. 59, pp. 467-483, Apr. 2017, doi: 10.1016/j.tourman.2016.09.009.
  98. H. Q. Vu, G. Li, R. Law, and Y. Zhang, ''Exploring tourist dining preferences based on restaurant reviews,'' J. Travel Res., vol. 58, no. 1, pp. 149-167, Jan. 2019, doi: 10.1177/0047287517744672.
  99. S. Song, H. Kawamura, J. Uchida, and H. Saito, ''Determining tourist satisfaction from travel reviews,'' Inf. Technol. Tourism, vol. 21, no. 3, pp. 337-367, Sep. 2019, doi: 10.1007/s40558-019-00144-3.
  100. B. Kim, S. Kim, and C. Y. Heo, ''Analysis of satisfiers and dissatisfiers in online hotel reviews on social media,'' Int. J. Contemp. Hospitality Manag., vol. 28, no. 9, pp. 1915-1936, Sep. 2016, doi: 10.1108/IJCHM-04-2015- 0177.
  101. N. Hu, T. Zhang, B. Gao, and I. Bose, ''What do hotel customers complain about? Text analysis using structural topic model,'' Tourism Manag., vol. 72, pp. 417-426, Jun. 2019, doi: 10.1016/j.tourman.2019.01.002.
  102. J. Wang and X. Yu, ''The driving path of customer sustainable consumption behaviors in the context of the sharing economy-Based on the interaction effect of customer signal, service provider signal, and platform signal,'' Sustainability, vol. 13, no. 7, p. 3826, Mar. 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/7/3826
  103. P. Brzustewicz and A. Singh, ''Sustainable consumption in consumer behavior in the time of COVID-19: Topic modeling on Twitter data using LDA,'' Energies, vol. 14, no. 18, p. 5787, Sep. 2021, doi: 10.3390/en14185787.
  104. E. Park, J. Kwon, and S.-B. Kim, ''Green marketing strategies on online platforms: A mixed approach of experiment design and topic modeling,'' Sustainability, vol. 13, no. 8, p. 4494, Apr. 2021, doi: 10.3390/su13084494.
  105. K. Celuch, ''Customers experience of purchasing event tickets: Mining online reviews based on topic modeling and sentiment analysis,'' Int. J. Event Festival Manag., vol. 39, pp. 36-50, Oct. 2020, doi: 10.1108/ IJEFM-06-2020-0034.
  106. J. Kang, S. Kim, and S. Roh, ''A topic modeling analysis for online news article comments on nurses workplace bullying,'' J. Korean Acad. Nursing, vol. 49, no. 6, pp. 736-747, Dec. 2019, doi: 10.4040/jkan.2019.49.6.736.
  107. S. Yun and J. Kang, ''Factors affecting workplace bullying in Korean hospital nurses,'' Korean J. Adult Nursing, vol. 26, no. 5, p. 553, 2014, doi: 10.7475/kjan.2014.26.5.553.
  108. X. Han, ''Evolution of research topics in LIS between 1996 and 2019: An analysis based on latent Dirichlet allocation topic model,'' Scientomet- rics, vol. 125, no. 3, pp. 2561-2595, Dec. 2020, doi: 10.1007/s11192-020- 03721-0.
  109. Y. Miyata, E. Ishita, F. Yang, M. Yamamoto, A. Iwase, and K. Kurata, ''Knowledge structure transition in library and information science: Topic modeling and visualization,'' Scientometrics, vol. 125, no. 1, pp. 665-687, Oct. 2020, doi: 10.1007/s11192-020-03657-5.
  110. K. Kurata, Y. Miyata, E. Ishita, M. Yamamoto, F. Yang, and A. Iwase, ''Analyzing library and information science full-text articles using a topic modeling approach,'' Proc. Assoc. Inf. Sci. Technol., vol. 55, no. 1, pp. 847-848, Jan. 2018, doi: 10.1002/pra2.2018.14505501143.
  111. M. Baghmohammad, A. Mansouri, and M. Cheashmehsohrabi, ''Iden- tification of topic development process of knowledge and information science field based on the topic modeling (LDA),'' Iranian J. Inf. Process. Manag., vol. 36, no. 2, pp. 297-328, 2020. [Online]. Available: https://jipm.irandoc.ac.ir/article-1-4480-en.pdf
  112. A. Ianina, L. Golitsyn, and K. Vorontsov, ''Multi-objective topic modeling for exploratory search in tech news,'' in Artificial Intelligence and Natural Language (Communications in Computer and Informa- tion Science). Cham, Switzerland: Springer, 2018, pp. 181-193, doi: 10.1007/978-3-319-71746-3_16.
  113. D. Landínez-Martínez, C. Quintero-López, and V. D. Gil-Vera, ''Working memory training in children with attention deficit hyperactivity disorder: A systematic review,'' Revista de Psicología Clínica con Niños y Adoles- centes, vol. 9, pp. 1-11, Sep. 2022, doi: 10.21134/rpcna.2022.09.3.7.
  114. P. Duque, O. E. Meza, D. Giraldo, and K. Barreto, ''Economía social y economía solidaria: Un análisis bibliométrico y revisión de literatura,'' REVESCO. Revista de Estudios Cooperativos, vol. 138, Jun. 2021, Art. no. e75566, doi: 10.5209/reve.75566.