Academia.eduAcademia.edu

Outline

Coarsely resolved topography along protein folding pathways

2000, The Journal of Chemical Physics

https://doi.org/10.1063/1.481077

Abstract

The kinetic data from the coarse representation of polypeptide torsional dynamics described in the preceding paper [Fernandez and Berry, J. Chem. Phys. 112, 5212 (2000), preceding paper] is inverted by using detailed balance to obtain a topographic description of the potential-energy surface (PES) along the dominant folding pathway of the bovine pancreatic trypsin inhibitor (BPTI). The topography is represented as a sequence of minima and effective saddle points. The dominant folding pathway displays an overall monotonic decrease in energy with a large number of staircaselike steps, a clear signature of a good structure-seeker. The diversity and availability of alternative folding pathways is analyzed in terms of the Shannon entropy σ(t) associated with the time-dependent probability distribution over the kinetic ensemble of contact patterns. Several stages in the folding process are evident. Initially misfolded states form and dismantle revealing no definite pattern in the topograp...

References (30)

  1. O. M. Becker and M. Karplus, J. Chem. Phys. 106, 1495 ͑1997͒.
  2. K. D. Ball et al., Science 271, 963 ͑1996͒.
  3. R. S. Berry, Int. J. Quantum Chem. 58, 657 ͑1996͒.
  4. D. J. Wales, J. Chem. Soc., Faraday Trans. 89, 1305 ͑1993͒.
  5. R. E. Kunz and R. S. Berry, J. Chem. Phys. 103, 1904 ͑1995͒.
  6. K. D. Ball and R. S. Berry, J. Chem. Phys. 109, 8541 ͑1998͒.
  7. K. D. Ball and R. S. Berry, J. Chem. Phys. 109, 8557 ͑1998͒.
  8. K. D. Ball and R. S. Berry, J. Chem. Phys. 111, 2060 ͑1999͒.
  9. R. S. Berry, N. Elmaci, J. P. Rose, and B. Vekhter, Proc. Natl. Acad. Sci. USA 94, 9520 ͑1997͒.
  10. A. Ferna ´ndez and R. S. Berry, J. Chem. Phys. 112, 5212 ͑2000͒, preceding paper.
  11. A. Ferna ´ndez, K. Kostov, and R. S. Berry, Proc. Natl. Acad. Sci. USA 96, 12991 ͑1999͒.
  12. A. Ferna ´ndez and A. Colubri, J. Math. Phys. 39, 3167 ͑1998͒.
  13. A. Ferna ´ndez, Phys. Chem. Chem. Phys. 1, 861 ͑1999͒.
  14. P. J. Flory, Statistical Mechanics of Chain Molecules ͑Wiley-Interscience, New York, 1969͒.
  15. Protein Folding, edited by T. E. Creighton ͑W. H. Freeman and Company, New York, 1992͒.
  16. R. Zwanzig, A. Szabo, and B. Bagchi, Proc. Natl. Acad. Sci. USA 89, 20 ͑1992͒.
  17. A. Ferna ´ndez and A. Colubri, Phys. Rev. E 60, 4645 ͑1999͒.
  18. D. Amir and E. Haas, Biochemistry 27, 8889 ͑1988͒.
  19. E. E. Gussakovsky and E. Haas, FEBS Lett. 308, 146 ͑1992͒.
  20. V. Ittah and E. Haas, Biochemistry 34, 4493 ͑1995͒.
  21. M. A. Miller, J. P. K. Doye, and D. J. Wales, J. Chem. Phys. 110, 328 ͑1999͒.
  22. C. L. Brooks III, M. Karplus, and B. M. Pettitt, Adv. Chem. Phys. 71, 1 ͑1988͒.
  23. Protein Folding, edited by T. E. Creighton ͑W. H. Freeman and Company, New York, 1992͒.
  24. C. Hall and E. Helfand, J. Chem. Phys. 50, 4831 ͑1982͒.
  25. G. J. Moro, J. Chem. Phys. 94, 8577 ͑1991͒.
  26. G. J. Moro, J. Chem. Phys. 97, 5749 ͑1992͒.
  27. M. Guenza and K. F. Freed, J. Chem. Phys. 105, 3823 ͑1996͒.
  28. T. E. Creighton, J. Mol. Biol. 113, 275 ͑1977͒.
  29. T. E. Creighton, Prog. Biophys. Mol. Biol. 33, 231 ͑1978͒.
  30. C. J. Camacho and D. Thirumalai, Proc. Natl. Acad. Sci. USA 92, 1277 ͑1995͒.