Academia.eduAcademia.edu

Outline

Atom-by-atom analysis of global downhill protein folding

2006

https://doi.org/10.1038/NATURE04859

Abstract
sparkles

AI

Atom-by-atom analysis reveals the complexities of global downhill protein folding, challenging conventional all-or-none folding theories. Utilizing nuclear magnetic resonance (NMR) on the protein BBL from Escherichia coli, detailed thermal unfolding assessments of backbone and side-chain protons uncover the statistical nature of folding, critical interactions, and the emergence of folding cooperativity. This method provides a new analytical tool applicable to other proteins exhibiting marginal folding barriers.

References (29)

  1. Tanford, C. Protein denaturation. Adv. Prot. Chem. 23, 121--282 (1968).
  2. Matthews, B. W. Structural and genetic-analysis of protein-folding and stability. Curr. Opin. Struct. Biol. 3, 589--593 (1993).
  3. Goldenberg, D. P. in Protein Folding (ed. Cheighton, T. E.) 353--406 (Freeman, New York, 1992).
  4. Fersht, A. R., Matouschek, A. & Serrano, L. The folding of an enzyme. 1. Theory of protein engineering analysis of stability and pathway of protein folding. J. Mol. Biol. 224, 771--782 (1992).
  5. Honig, B. & Yang, A. S. Free-energy balance in protein-folding. Adv. Protein Chem. 46, 27--58 (1995).
  6. Sanchez, I. E. & Kiefhaber, T. Origin of unusual f-values in protein folding: Evidence against specific nucleation sites. J. Mol. Biol. 334, 1077--1085 (2003).
  7. Bryngelson, J. D., Onuchic, J. N., Socci, N. D. & Wolynes, P. G. Funnels, pathways, and the energy landscape of protein-folding-a synthesis. Prot. Struct. Funct. Genet. 21, 167--195 (1995).
  8. Onuchic, J. N., LutheySchulten, Z. & Wolynes, P. Theory of protein folding: The energy landscape perspective. Annu. Rev. Phys. Chem. 48, 545--600 (1997).
  9. Yang, W. Y. & Gruebele, M. Folding at the speed limit. Nature 423, 193--197 (2003).
  10. Kubelka, J., Hofrichter, J. & Eaton, W. A. The protein folding 'speed limit'. Curr. Opin. Struct. Biol. 14, 76--88 (2004).
  11. Akmal, A. & Mun ˜oz, V. The nature of the free energy barriers to two-state folding. Prot. Struct. Funct. Bioinformatics 57, 142--152 (2004).
  12. Garcia-Mira, M. M., Sadqi, M., Fischer, N., Sanchez-Ruiz, J. M. & Mun ˜oz, V. Experimental identification of downhill protein folding. Science 298, 2191--2195 (2002).
  13. Mun ˜oz, V. Thermodynamics and kinetics of downhill protein folding investigated with a simple statistical mechanical model. Int. J. Quantum Chem. 90, 1522--1528 (2002).
  14. Oliva, F. Y. & Mun ˜oz, V. A simple thermodynamic test to discriminate between two-state and downhill folding. J. Am. Chem. Soc. 126, 8596--8597 (2004).
  15. Mun ˜oz, V. & Sanchez-Ruiz, J. M. Exploring protein folding ensembles: A variable barrier model for the analysis of equilibrium unfolding experiments. Proc. Natl Acad. Sci. USA 101, 17646--17651 (2004).
  16. Robien, M. A. et al. 3-Dimensional solution structure of the E3-binding domain of the dihydrolipoamide succinyl transferase core from the 2-oxoglutarate dehydrogenase multienzyme complex of Escherichia coli.. Biochemistry 31, 3463--3471 (1992).
  17. Naganathan, A. N., Perez-Jimenez, R., Sanchez-Ruiz, J. M. & Mun ˜oz, V. Robustness of downhill folding: Guidelines for the analysis of equilibrium folding experiments on small proteins. Biochemistry 44, 7435--7449 (2005).
  18. Hanggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: Fifty years after Kramers. Rev. Mod. Phys. 62, 251--341 (1990).
  19. Maity, H., Maity, M., Krishna, M. M. G., Mayne, L. & Englander, S. W. Protein folding: The stepwise assembly of foldon units. Proc. Natl Acad. Sci. USA 102, 4741--4746 (2005).
  20. Wagner, G., Pardi, A. & Wu ¨thrich, K. Hydrogen-bond length and H-1-NMR chemical-shifts in proteins. J. Am. Chem. Soc. 105, 5948--5949 (1983).
  21. Wishart, D. S. & Sykes, B. D. Chemical-shifts as a tool for structure determination. Nucl. Magn. Res. C 239, 363--392 (1994).
  22. Arai, M. & Kuwajima, K. Rapid formation of a molten globule intermediate in refolding of a-lactalbumin. Fold. Des. 1, 275--287 (1996).
  23. Plotkin, S. S., Wang, J. & Wolynes, P. G. Statistical mechanics of a correlated energy landscape model for protein folding funnels. J. Chem. Phys. 106, 2932--2948 (1997).
  24. Shimizu, S. & Chan, H. S. Anti-cooperativity and cooperativity in hydrophobic interactions: Three-body free energy landscapes and comparison with implicit- solvent potential functions for proteins. Prot. Struct. Funct. Genet. 48, 15--30 (2002).
  25. Naganathan, A. N. & Mun ˜oz, V. Scaling of folding times with protein size. J. Am. Chem. Soc. 127, 480--481 (2005).
  26. Holtzer, M. E., Lovett, E. G., d'Avignon, D. A. & Holtzer, A. Thermal unfolding in a GCN4-like leucine zipper: C-13a NMR chemical shifts and local unfolding curves. Biophys. J. 73, 1031--1041 (1997).
  27. Klimov, D. K. & Thirumalai, D. Is there a unique melting temperature for two-state proteins? J. Comp. Chem. 23, 161--165 (2002).
  28. Palmer, A. G., Kroenke, C. D. & Loria, J. P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204--238 (2001).
  29. Tollinger, M., Skrynnikov, N. R., Mulder, F. A., Forman-Kay, J. D. & Kay, L. E. Slow dynamics in folded and unfolded states on an SH3 domain. J. Am. Chem. Soc. 123, 11341--11352 (2001).