Academia.eduAcademia.edu

Outline

Chapter 9 Tracking

2016

Abstract
sparkles

AI

Tracking is a pivotal component in enhancing the virtual reality (VR) experience, overcoming significant challenges that have historically hindered VR headset adoption. This chapter categorizes tracking into three domains: the user's sensory organs, other body parts, and the surrounding physical environment, each serving different purposes in VR interactions. The text elaborates on the underlying mechanics of tracking, utilizing commodity components such as inertial measurement units (IMUs) and cameras, and discusses various tracking methods, including single-axis rotation, 3-degree of freedom (DOF) orientation, and positional tracking, culminating in the need for effective integration of real and virtual environments.

References (46)

  1. Y. Akatsuka and G. A. Bekey. Compensation for end to end delays in a VR system. In Proceedings IEEE Virtual Reality Annual International Sympo- sium, pages 156-159, 1998.
  2. J. Angeles. Spatial Kinematic Chains. Analysis, Synthesis, and Optimisation. Springer-Verlag, Berlin, 1982.
  3. J. Angeles. Rotational Kinematics. Springer-Verlag, Berlin, 1989.
  4. J. Angeles. Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms. Springer-Verlag, Berlin, 2003.
  5. C. K. Chui and G. Chen. Kalman Filtering. Springer-Verlag, Berlin, 1991.
  6. D. Cox, J. Little, and D. O'Shea. Ideals, Varieties, and Algorithms. Springer- Verlag, Berlin, 1992.
  7. A. T. Duchowski. Eye Tracking Methodology: Theory and Practice, 2nd Ed. Springer-Verlag, Berlin, 2007.
  8. J. Favre, B. M. Jolles, O. Siegrist, and K. Aminian. Quaternion-based fu- sion of gyroscopes and accelerometers to improve 3D angle measurement. Electronics Letters, 32(11):612-614, 2006.
  9. M. A. Fischler and R. C. Bolles. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24(6):381-395, 1981.
  10. W. T. Fong, S. K. Ong, and A. Y. C. Nee. Methods for in-field user calibration of an inertial measurement unit without external equipment. Measurement Science and Technology, 19(8), 2008.
  11. J. Fuentes-Pacheco, J. Ruiz-Ascencio, and J. M. Rendon-Mancha. Visual simultaneous localization and mapping: a survey. Journal Artificial Intelli- gence Review, 43(1):55-81, 2015.
  12. D. Gebre-Egziabher, G. Elkaim, J. David Powell, and B. Parkinson. Cali- bration of strapdown magnetometers in magnetic field domain. Journal of Aerospace Engineering, 19(2):87-102, 2006.
  13. R. S. Hartenberg and J. Denavit. A kinematic notation for lower pair mech- anisms based on matrices. Journal of Applied Mechanics, 77:215-221, 1955.
  14. R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision, 2nd Ed. Cambridge University Press, Cambridge, U.K., 2004.
  15. W. T. Higgins. A comparison of complementary and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, 11(3):321-325, 1975.
  16. A. Iserles. A First Course in the Numerical Analysis of Differential Equa- tions, 2nd Ed. Cambridge University Press, Cambridge, U.K., 2008.
  17. R. Kalman. A new approach to linear filtering and prediction problems. Transactions of the ASME, Journal of Basic Engineering, 82:35-45, 1960.
  18. H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Proceedings of IEEE and ACM International Workshop on Augmented Reality, 1999.
  19. W. Khalil and J. F. Kleinfinger. A new geometric notation for open and closed-loop robots. In Proceedings IEEE International Conference on Robotics & Automation, volume 3, pages 1174-1179, 1986.
  20. C. Konvalin. Compensating for tilt, hard-iron, and soft-iron ef- fects. Available at http://www.sensorsmag.com/sensors/motion-velocity- displacement/compensating-tilt-hard-iron-and-soft-iron-effects-6475, Decem- ber 2009. Last retrieved on May 30, 2016.
  21. P. R. Kumar and P. Varaiya. Stochastic Systems. Prentice-Hall, Englewood Cliffs, NJ, 1986.
  22. S. M. LaValle. Planning Algorithms. Cambridge University Press, Cambridge, U.K., 2006. Available at http://planning.cs.uiuc.edu/.
  23. S. M. LaValle. Help! My cockpit is drifting away. Oculus blog post. Re- trieved from https://developer.oculus.com/blog/magnetometer/, December 2013. Last retrieved on Jan 10, 2016.
  24. S. M. LaValle. The latent power of prediction. Oculus blog post. Retrieved from https://developer.oculus.com/blog/the-latent-power-of- prediction/, July 2013. Last retrieved on Jan 10, 2016.
  25. S. M. LaValle. Sensor fusion: Keeping it simple. Oculus blog post. Retrieved from https://developer.oculus.com/blog/sensor-fusion-keeping-it- simple/, May 2013. Last retrieved on Jan 10, 2016.
  26. S. M. LaValle and P. Giokaris. Perception based predictive tracking for head mounted displays. US Patent 20140354515A1, December 2014. BIBLIOGRAPHY v
  27. S. M. LaValle, A. Yershova, M. Katsev, and M. Antonov. Head tracking for the Oculus Rift. In Proc. IEEE International Conference on Robotics and Automation, pages 187-194, 2014.
  28. Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry. An Invitation to 3-D Vision. Springer-Verlag, Berlin, 2003.
  29. R. Mahoney, T. Hamel, and J.-M. Pfimlin. Nonlinear complementary filters on the special orthogonal group. IEEE Transactions on Automatic Control, 53(5):1203-1218, 2008.
  30. G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart. Fusion of IMU and vision for absolute scale estimation in monocular SLAM. Journal of Intelligent and Robotic Systems, 61(1):287-299, 2011.
  31. M. Pedley. High-precision calibration of a three-axis accelerome- ter. Technical report, Freescale Semiconductor, 2015. Available at http://cache.freescale.com/files/sensors/doc/app note/AN4399.pdf.
  32. D. Schmalsteig and T. Höllerer. Augmented Reality: Principles and Practice. Mendeley Ltd., London, 2015.
  33. G. Schweighofer and A. Pinz. Robust pose estimation from a planar tar- get. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(12):2024-2030, 2006.
  34. B. R. Sorensen, M. Donath, G.-B. Yanf, and R. C. Starr. The minnesota scanner: A prototype sensor for three-dimensional tracking of moving body segments. IEEE Transactions on Robotics, 5(4):499-509, 1989.
  35. R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag, Berlin, 2010.
  36. F. Tejada. Silicon on Insulator CMOS and Microelectromechanical Systems: Mechanical Devices, Sensing Techniques and System Electronics. PhD thesis, The Johns Hopkins University, 2006.
  37. S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. MIT Press, Cambridge, MA, 2005.
  38. B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzbiggon. Bundle adjustment -a modern synthesis. In Proceedings IEEE International Workshop on Vision Algorithms, pages 298-372, 1999.
  39. J. F. Vasconcelos, G. Elkaim, C. Silvestre, P. Oliveira, and B. Cardeira. Geometric approach to strapdown magnetometer calibration in sensor frame. Transactions on Aerospace and Electronic Systems, 47(2):1293-1306, 2011.
  40. X. Wang and B. Winslow. Eye tracking in virtual environments. In K. S. Hale and K. M. Stanney, editors, Handbook of Virtual Environments, 2nd Edition. CRC Press, Boca Raton, FL, 2015.
  41. D. S. Watkins. Fundamentals of Matrix Computations. Wiley, Hoboken, NJ, 2002.
  42. G. Welch and E. Foxlin. Motion tracking: no silver bullet, but a respectable arsenal. IEEE Computer Graphics and Applications, 22(6):24-28, 2002.
  43. Y. Wu and Z. Hu. PnP problem revisited. Journal of Mathematical Imaging and Vision, 24(1):131-141, 2006.
  44. V. M. Zatsiorsky and B. I. Prilutsky. Biomechanics of Skeletal Muscles. Human Kinetics, Champaign, IL, 2012.
  45. Y. Zheng, Y. Kuang, S. Sugimoto, and K. Aström. Revisiting the PnP prob- lem: A fast, general and optimal solution. In Proceedings IEEE International Conference on Computer Vision, pages 2344-2351, 2013.
  46. H. Zhou and H. Hu. Human motion tracking for rehabilitation -A survey. Biomedical Signal Processing and Control, 3(1):1-18, 2007.