Academia.eduAcademia.edu

Outline

Singular Factorization of an Arbitrary Matrix

2017, Journal of the Institute of Engineering

Abstract

In this paper, we study the Singular Value Decomposition of an arbitrary matrix A  , especially its subspaces of activation, which leads in natural manner to the pseudo inverse of Moore-Bjenhammar-Penrose. Besides, we analyze the compatibility of linear systems and the uniqueness of the corresponding solution and our approach gives the Lanczos classification for these systems.

References (35)

  1. Andrews HC and Patterson CL (1975), Outer product expansions and their uses in digital image processing. Am. Math. Monthly, 82: 1-13.
  2. Beltrami E (1873), Sulle funzioni bilineari. Giornale di Mathematische, 11: 98-106.
  3. Bjerhammar A (1951), Application of calculus of matrices to method of least squares, with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm, (49): 1-86.
  4. Blank SJ, Krikorian N and Spring D (1989), A geometrically inspired proof of the singular value decomposition. Am. Math. Monthly 96(3): 238-239.
  5. Singular Factorization of an Arbitrary Matrix
  6. Cannell DM (2001), George Green, mathematician & physicist 1793-1841. SIAM, Philadelphia, USA.
  7. Eckart C and Young G (1939), A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc., 45(2) : 118-121.
  8. Gaftoi V, López-Bonilla J and Ovando G (2007), Singular value decomposition and Lanczos potential, in "Current topics in quantum field theory research", Ed. O. Kovras, Nova Science Pub., New York, Chap. 10, 313-316.
  9. Golub GH and Kahan W (1965), Calculating the singular values and pseudo inverse of a matrix. SIAM J. Numer.Anal. B2: 205-224.
  10. Greville TNE (1960), Some applications of the pseudo inverse of a matrix. SIAM Rev., 2 (1) : 15-22.
  11. Green G (1828), An essay on the application of mathematical analysis to the theories of electricity and magnetism. Private subscription, only fifty copies, reprinted in three parts at J. Reine Angewand.Math. 39 (1850) 73-89, 44 (1852) 356-374 and 47 (1854): 161-212.
  12. Guerrero IM, López-Bonilla J and Rosales RL (2012), SVD applied to Dirac super matrix, The SciTech, J. Sci. & Tech. Special Issue, Aug. 111-114.
  13. Hazra AK (2006), Matrix algebra, calculus and generalized inverse. Cambridge Int. Sci. Pub.
  14. Heat MT (1997), Scientific computing: An introductory survey. Chap. 4, McGraw-Hill, New York.
  15. Hernández GA, López-Bonilla J and Rivera RJ (2012), A similarity transformation for the rotation matrix. Int. J. Math. Eng. Sci., 1(1): 8-12.
  16. Jordan C (1874), Mémoire sur les forms bilinéaires. J. de Mathématiques Pures et Appliquées, Deuxieme Série, 19: 35-54.
  17. Jordan C (1874), Sur la réduction des formes bilinéaires. Compt. Rend. Acad. Sci. Paris, 78: 614 -617.
  18. Lam P, López-Bonilla J, López-Vázquez R and Ovando G (2015), Matrix method to construct point symmetries of Lagrangians, Bull. of Kerala Mathematics Association, 12(1): 43-52.
  19. Lanczos C (1958), Linear systems in self-adjoint form. Am. Math. Monthly, 65(9): 665 -679.
  20. Lanczos C (1960), Extended boundary value problems. Proc. Int. Congr. Math. Edinburgh- 1958, Cambridge University Press, 154-181.
  21. Lanczos C (1966), Boundary value problems and orthogonal expansions. SIAM J. Appl. Math., 14(4): 831-863
  22. Lanczos C (1997), Linear Differential Operators, Dover, New York.
  23. Moore EH (1920), On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26 (9) : 394-395.
  24. Moler CB and Morrison D (1983), Singular value analysis of cryptograms. Am. Math. Monthly, 90 : 78-87.
  25. Nakos G and Joyner D (1998), Linear algebra with applications. Chap. 8, Brooks/Cole Pub. Co, New York.
  26. Penrose R (1955), A generalized inverse for matrices. Proc. Camb. Phil. Soc., 51: 406-413.
  27. Picard E (1910), Sur un theorem general relative aux integrals de premier espéce et sur quelques problémes de physique mathématique. Rend. Circ. Mat. Palermo, 25: 79-97.
  28. Schmidt E (1907), Zur theorie der linearen und nichtlinearen integralgleichungen. Teil 1, Mathematische Annalen Bd. 63: 433-476 and 64: 161-174.
  29. Smithies F (1963), Linear differential operators. The Mathematical Gazette 47: 265-266.
  30. Stewart GW (1993), On the early history of the SVD. SIAM Review, 35: 551-566
  31. Sylvester JJ (1889), Sur la réduction biorthogonale d'une forme linéo-linéaire á sa forme cannonique. Compt. Rend. Acad. Sci. Paris, 108: 651-653.
  32. Sylvester JJ (1889), On the reduction of a bilinear quantic of the nth order to the form of a sum of n products. Messenger of Mathematics, 19: 42-46.
  33. Weyr E (1885), Répartition des matrices en espaces et formation de toutes les espaces. C. R. Acad. Sci. Paris,100: 966-969.
  34. Weyr E (1890), Zur theorie der bilinearen formen. Mon. für Mathematik und Physik, 1 : 163- 236.
  35. Yanai H, Takeuchi K and Takane Y (2011), Projection matrices, generalized inverse matrices, and singular value decomposition. Chap. 3, Springer, New York.