Singular Factorization of an Arbitrary Matrix
2017, Journal of the Institute of Engineering
Abstract
In this paper, we study the Singular Value Decomposition of an arbitrary matrix A , especially its subspaces of activation, which leads in natural manner to the pseudo inverse of Moore-Bjenhammar-Penrose. Besides, we analyze the compatibility of linear systems and the uniqueness of the corresponding solution and our approach gives the Lanczos classification for these systems.
References (35)
- Andrews HC and Patterson CL (1975), Outer product expansions and their uses in digital image processing. Am. Math. Monthly, 82: 1-13.
- Beltrami E (1873), Sulle funzioni bilineari. Giornale di Mathematische, 11: 98-106.
- Bjerhammar A (1951), Application of calculus of matrices to method of least squares, with special references to geodetic calculations. Trans. Roy. Inst. Tech. Stockholm, (49): 1-86.
- Blank SJ, Krikorian N and Spring D (1989), A geometrically inspired proof of the singular value decomposition. Am. Math. Monthly 96(3): 238-239.
- Singular Factorization of an Arbitrary Matrix
- Cannell DM (2001), George Green, mathematician & physicist 1793-1841. SIAM, Philadelphia, USA.
- Eckart C and Young G (1939), A principal axis transformation for non-hermitian matrices. Bull. Amer. Math. Soc., 45(2) : 118-121.
- Gaftoi V, López-Bonilla J and Ovando G (2007), Singular value decomposition and Lanczos potential, in "Current topics in quantum field theory research", Ed. O. Kovras, Nova Science Pub., New York, Chap. 10, 313-316.
- Golub GH and Kahan W (1965), Calculating the singular values and pseudo inverse of a matrix. SIAM J. Numer.Anal. B2: 205-224.
- Greville TNE (1960), Some applications of the pseudo inverse of a matrix. SIAM Rev., 2 (1) : 15-22.
- Green G (1828), An essay on the application of mathematical analysis to the theories of electricity and magnetism. Private subscription, only fifty copies, reprinted in three parts at J. Reine Angewand.Math. 39 (1850) 73-89, 44 (1852) 356-374 and 47 (1854): 161-212.
- Guerrero IM, López-Bonilla J and Rosales RL (2012), SVD applied to Dirac super matrix, The SciTech, J. Sci. & Tech. Special Issue, Aug. 111-114.
- Hazra AK (2006), Matrix algebra, calculus and generalized inverse. Cambridge Int. Sci. Pub.
- Heat MT (1997), Scientific computing: An introductory survey. Chap. 4, McGraw-Hill, New York.
- Hernández GA, López-Bonilla J and Rivera RJ (2012), A similarity transformation for the rotation matrix. Int. J. Math. Eng. Sci., 1(1): 8-12.
- Jordan C (1874), Mémoire sur les forms bilinéaires. J. de Mathématiques Pures et Appliquées, Deuxieme Série, 19: 35-54.
- Jordan C (1874), Sur la réduction des formes bilinéaires. Compt. Rend. Acad. Sci. Paris, 78: 614 -617.
- Lam P, López-Bonilla J, López-Vázquez R and Ovando G (2015), Matrix method to construct point symmetries of Lagrangians, Bull. of Kerala Mathematics Association, 12(1): 43-52.
- Lanczos C (1958), Linear systems in self-adjoint form. Am. Math. Monthly, 65(9): 665 -679.
- Lanczos C (1960), Extended boundary value problems. Proc. Int. Congr. Math. Edinburgh- 1958, Cambridge University Press, 154-181.
- Lanczos C (1966), Boundary value problems and orthogonal expansions. SIAM J. Appl. Math., 14(4): 831-863
- Lanczos C (1997), Linear Differential Operators, Dover, New York.
- Moore EH (1920), On the reciprocal of the general algebraic matrix. Bull. Am. Math. Soc., 26 (9) : 394-395.
- Moler CB and Morrison D (1983), Singular value analysis of cryptograms. Am. Math. Monthly, 90 : 78-87.
- Nakos G and Joyner D (1998), Linear algebra with applications. Chap. 8, Brooks/Cole Pub. Co, New York.
- Penrose R (1955), A generalized inverse for matrices. Proc. Camb. Phil. Soc., 51: 406-413.
- Picard E (1910), Sur un theorem general relative aux integrals de premier espéce et sur quelques problémes de physique mathématique. Rend. Circ. Mat. Palermo, 25: 79-97.
- Schmidt E (1907), Zur theorie der linearen und nichtlinearen integralgleichungen. Teil 1, Mathematische Annalen Bd. 63: 433-476 and 64: 161-174.
- Smithies F (1963), Linear differential operators. The Mathematical Gazette 47: 265-266.
- Stewart GW (1993), On the early history of the SVD. SIAM Review, 35: 551-566
- Sylvester JJ (1889), Sur la réduction biorthogonale d'une forme linéo-linéaire á sa forme cannonique. Compt. Rend. Acad. Sci. Paris, 108: 651-653.
- Sylvester JJ (1889), On the reduction of a bilinear quantic of the nth order to the form of a sum of n products. Messenger of Mathematics, 19: 42-46.
- Weyr E (1885), Répartition des matrices en espaces et formation de toutes les espaces. C. R. Acad. Sci. Paris,100: 966-969.
- Weyr E (1890), Zur theorie der bilinearen formen. Mon. für Mathematik und Physik, 1 : 163- 236.
- Yanai H, Takeuchi K and Takane Y (2011), Projection matrices, generalized inverse matrices, and singular value decomposition. Chap. 3, Springer, New York.