Chromatic Polynomials and Bialgebras of Graphs
2021, International Electronic Journal of Algebra
https://doi.org/10.24330/IEJA.969651Abstract
The chromatic polynomial is characterized as the unique polynomial invariant of graphs, compatible with two interacting bialgebras structures: the first coproduct is given by partitions of vertices into two parts, the second one by a contraction-extraction process. This gives Hopf-algebraic proofs of Rota's result on the signs of coefficients of chromatic polynomials and of Stanley's interpretation of the values at negative integers of chromatic polynomials. We also consider chromatic symmetric functions and their noncommutative versions.
References (27)
- Eiichi Abe, Hopf algebras, Cambridge Tracts in Mathematics, vol. 74, Cambridge University Press, Cambridge-New York, 1980, Translated from the Japanese by Hisae Kinoshita and Hiroko Tanaka.
- Marcelo Aguiar, Nantel Bergeron, and Frank Sottile, Combinatorial Hopf algebras and gen- eralized Dehn-Sommerville relations, Compos. Math. 142 (2006), no. 1, 130.
- Marcelo Aguiar and Swapneel Mahajan, Monoidal functors, species and Hopf algebras, CRM Monograph Series, vol. 29, American Mathematical Society, Providence, RI, 2010, With forewords by Kenneth Brown and Stephen Chase and André Joyal.
- Nantel Bergeron, Christophe Reutenauer, Mercedes Rosas, and Mike Zabrocki, Invariants and coinvariants of the symmetric groups in noncommuting variables, Canad. J. Math. 60 (2008), no. 2, 266296.
- G. D. Birkho and D. C. Lewis, Chromatic polynomials, Trans. Amer. Math. Soc. 60 (1946), 355451.
- Jean-Paul Bultel, Ali Chouria, Jean-Gabriel Luque, and Olivier Mallet, Word symmetric functions and the Redeld-Pólya theorem, 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor. Comput. Sci. Proc., AS, Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2013, pp. 563574.
- Damien Calaque, Kurusch Ebrahimi-Fard, and Dominique Manchon, Two interacting Hopf algebras of trees: a Hopf-algebraic approach to composition and substitution of B-series, Adv. in Appl. Math. 47 (2011), no. 2, 282308.
- Alain Connes and Dirk Kreimer, Hopf algebras, renormalization and noncommutative ge- ometry, Comm. Math. Phys. 199 (1998), no. 1, 203242.
- Renormalization in quantum eld theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys. 210 (2000), no. 1, 249273.
- Loïc Foissy, Commutative and non-commutative bialgebras of quasi-posets and applications to Ehrhart polynomials, arXiv:1605.08310, 2016.
- David D. Gebhard and Bruce E. Sagan, A chromatic symmetric function in noncommuting variables, J. Algebraic Combin. 13 (2001), no. 3, 227255.
- Israel M. Gelfand, Daniel Krob, Alain Lascoux, Bernard Leclerc, Vladimir S. Retakh, and Jean-Yves Thibon, Noncommutative symmetric functions, Adv. Math. 112 (1995), no. 2, 218348.
- Frank Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass.-Menlo Park, Calif.-London, 1969.
- Michiel Hazewinkel, Symmetric functions, noncommutative symmetric functions and qua- sisymmetric functions. II, Acta Appl. Math. 85 (2005), no. 1-3, 319340.
- Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon, Commutative combinatorial Hopf algebras, J. Algebraic Combin. 28 (2008), no. 1, 6595.
- Christian Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer- Verlag, New York, 1995.
- Claudia Malvenuto and Christophe Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, J. Algebra 177 (1995), no. 3, 967982.
- Dominique Manchon, On bialgebras and Hopf algebras or oriented graphs, Conuentes Math. 4 (2012), no. 1, 1240003, 10.
- J.-C. Novelli and J.-Y. Thibon, Polynomial realization of some trialgebras, FPSAC'06 (San Diego) (2006).
- Mercedes H. Rosas, MacMahon symmetric functions, the partition lattice, and Young sub- groups, J. Combin. Theory Ser. A 96 (2001), no. 2, 326340.
- Gian-Carlo Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 2 (1964), 340368.
- William R. Schmitt, Incidence Hopf algebras, J. Pure Appl. Algebra 96 (1994), no. 3, 299 330.
- Richard P. Stanley, Acyclic orientations of graphs, Discrete Math. 5 (1973), 171178.
- A symmetric function generalization of the chromatic polynomial of a graph, Adv. Math. 111 (1995), no. 1, 166194.
- Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999, With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin.
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969.
- Pepijn van der Laan, Operads. Hopf algebras and coloured Koszul duality, PhD thesis, Uni- versiteit Utrecht, 2004.