Reaching generalized critical values of a polynomial
2013, Mathematische Zeitschrift
https://doi.org/10.1007/S00209-013-1213-2Abstract
Let f : K n → K be a polynomial, K = R, C. We give an algorithm to compute the set of generalized critical values. The algorithm uses a finite dimensional space of rational arcs along which we can reach all generalized critical values of f .
References (47)
- I. S. Antypolis, A new approach to primary decomposition, J. of Symbolic Computation 11, (1996) 1-15.
- S. Basu, R. Pollack, M.F. Roy, Algorithms in real algebraic geometry, Springer, 2006.
- R. Benedetti, J-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Mathématiques, Hermann, 1990.
- J. Bochnak, M. Coste, M.F. Roy, Real algebraic geometry, E.M.G vol. 36 (1998) Springer.
- H.Flenner, L.O'Carroll, W.Vogel, Joins and Intersections, Springer-Verlag, Berlin-Heidelberg 1999,.
- Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
- Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
- Z. Jelonek, On the Lojasiewicz exponent, Hokkaido Journal of Math. 35, (2006), 471-485 ,
- Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial, J. für die reine und angewandte Mathematik 565 (2003), 1-11.
- Z. Jelonek, K. Kurdyka, Quantitative Generalized Bertini-Sard Theorem for smooth affine varieties", Discrete and Computational Geometry 34, (2005), 659-678.
- M. Goresky, R.MacPherson,Stratified Morse theory. Springer (1988).
- V. Guillemin, A. Pollack, Differential topology. Prentice-Hall (1974).
- H.V. Hà, T.S. Pham Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), no. 1, 7182.
- H.V. Hà, T.S. Pham Global optimization of polynomials using the truncated tangency variety and sums of squares. ( SIAM J. Optim. 19 (2008), no. 2, 941951
- K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. of Diff. Geom. 56 (2000), 67-92.
- A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
- A. Parusiński, A note on singularities at infinity of complex polynomials, in "Symplectic Singu- larities and Geometry of Gauge fields", eds. R. Budzyński et al., Banach Center Publications 39, Warszawa (1997), 131-141.
- M. Safey El Din, Testing Sign Conditions on a Multivariate Polynomial and Applications, Math. Comput. Sci. 1 (2007), 177-207.
- M. Safey El Din, Computing the global optimum of a multivariate polynomial over the reals, ISSAC 2008 Proceedings, D. Jeffrey (eds), Austria (Hagenberg), 2008.
- Z. Jelonek) Instytut Matematyczny, Polska Akademia Nauk, Św. Tomasza 30, 31-027 Kraków, Poland References
- S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Springer, 2006.
- R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Mathématiques, Hermann, 1990.
- J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, E.M.G vol. 36 (1998) Springer.
- M. Coste, M. J. de la Puente, Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra 162 (2001), no. 1, 2335.
- H. Flenner, L. O'Carroll, W. Vogel, Joins and Intersections, Springer-Verlag, Berlin-Heidelberg 1999.
- S. Iitaka, Algebraic Geometry, Springer Verlag 1982.
- Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
- Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
- Z. Jelonek, On the Lojasiewicz exponent, Hokkaido Journal of Math. 35, (2006), 471-485.
- Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial, J. für die reine und angewandte Mathematik 565 (2003), 1-11.
- Z. Jelonek, K. Kurdyka, Quantitative Generalized Bertini-Sard Theorem for smooth affine varieties, Discrete and Computational Geometry 34, (2005), 659-678.
- R. Guning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall (1965).
- M. Goresky, R. MacPherson, Stratified Morse theory. Springer (1988).
- V. Guillemin, A. Pollack, Differential topology. Prentice-Hall (1974).
- H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9 (1984), no. 1, 21-32.
- H. V. Hà, T. S. Pham, Minimizing polynomial functions, Acta Math. Vietnam. 32 (2007), no. 1, 71-82.
- H. V. Hà, T. S. Pham, Global optimization of polynomials using the truncated tangency variety and sums of squares, SIAM J. Optim. 19 (2008), no. 2, 941-951.
- K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 281 (1988), 445- 462.
- K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Diff. Geom. 56 (2000), 67-92.
- A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
- A. Parusiński, A note on singularities at infinity of complex polynomials, in "Symplectic Singu- larities and Geometry of Gauge fields", eds. R. Budzyński et al., Banach Center Publications 39, Warszawa (1997), 131-141.
- M. Raibaut, Motivic Milnor fibers of a rational function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 519-524.
- M. Safey El Din, Testing Sign Conditions on a Multivariate Polynomial and Applications, Math. Comput. Sci. 1 (2007), 177-207.
- M. Safey El Din, Computing the global optimum of a multivariate polynomial over the reals, ISSAC 2008 Proceedings, D. Jeffrey (eds), Austria (Hagenberg), 2008.
- P. Scheiblechner, On a generalization of Stickelberger's theorem, J. Symbolic Comput. 45 (2010), no. 12, 1459-1470.
- M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automor- phismes algébriques de l'espace C 2 , J. Math. Soc. Japan 26 (1974), 241-257.
- R. Thom, Ensembles et morphismes, stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284.