Academia.eduAcademia.edu

Outline

Reaching generalized critical values of a polynomial

2013, Mathematische Zeitschrift

https://doi.org/10.1007/S00209-013-1213-2

Abstract

Let f : K n → K be a polynomial, K = R, C. We give an algorithm to compute the set of generalized critical values. The algorithm uses a finite dimensional space of rational arcs along which we can reach all generalized critical values of f .

References (47)

  1. I. S. Antypolis, A new approach to primary decomposition, J. of Symbolic Computation 11, (1996) 1-15.
  2. S. Basu, R. Pollack, M.F. Roy, Algorithms in real algebraic geometry, Springer, 2006.
  3. R. Benedetti, J-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Mathématiques, Hermann, 1990.
  4. J. Bochnak, M. Coste, M.F. Roy, Real algebraic geometry, E.M.G vol. 36 (1998) Springer.
  5. H.Flenner, L.O'Carroll, W.Vogel, Joins and Intersections, Springer-Verlag, Berlin-Heidelberg 1999,.
  6. Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
  7. Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
  8. Z. Jelonek, On the Lojasiewicz exponent, Hokkaido Journal of Math. 35, (2006), 471-485 ,
  9. Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial, J. für die reine und angewandte Mathematik 565 (2003), 1-11.
  10. Z. Jelonek, K. Kurdyka, Quantitative Generalized Bertini-Sard Theorem for smooth affine varieties", Discrete and Computational Geometry 34, (2005), 659-678.
  11. M. Goresky, R.MacPherson,Stratified Morse theory. Springer (1988).
  12. V. Guillemin, A. Pollack, Differential topology. Prentice-Hall (1974).
  13. H.V. Hà, T.S. Pham Minimizing polynomial functions. Acta Math. Vietnam. 32 (2007), no. 1, 7182.
  14. H.V. Hà, T.S. Pham Global optimization of polynomials using the truncated tangency variety and sums of squares. ( SIAM J. Optim. 19 (2008), no. 2, 941951
  15. K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. of Diff. Geom. 56 (2000), 67-92.
  16. A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
  17. A. Parusiński, A note on singularities at infinity of complex polynomials, in "Symplectic Singu- larities and Geometry of Gauge fields", eds. R. Budzyński et al., Banach Center Publications 39, Warszawa (1997), 131-141.
  18. M. Safey El Din, Testing Sign Conditions on a Multivariate Polynomial and Applications, Math. Comput. Sci. 1 (2007), 177-207.
  19. M. Safey El Din, Computing the global optimum of a multivariate polynomial over the reals, ISSAC 2008 Proceedings, D. Jeffrey (eds), Austria (Hagenberg), 2008.
  20. Z. Jelonek) Instytut Matematyczny, Polska Akademia Nauk, Św. Tomasza 30, 31-027 Kraków, Poland References
  21. S. Basu, R. Pollack, M.-F. Roy, Algorithms in real algebraic geometry, Springer, 2006.
  22. R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualités Mathématiques, Hermann, 1990.
  23. J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, E.M.G vol. 36 (1998) Springer.
  24. M. Coste, M. J. de la Puente, Atypical values at infinity of a polynomial function on the real plane: an erratum, and an algorithmic criterion, J. Pure Appl. Algebra 162 (2001), no. 1, 2335.
  25. H. Flenner, L. O'Carroll, W. Vogel, Joins and Intersections, Springer-Verlag, Berlin-Heidelberg 1999.
  26. S. Iitaka, Algebraic Geometry, Springer Verlag 1982.
  27. Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
  28. Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
  29. Z. Jelonek, On the Lojasiewicz exponent, Hokkaido Journal of Math. 35, (2006), 471-485.
  30. Z. Jelonek, K. Kurdyka, On asymptotic critical values of a complex polynomial, J. für die reine und angewandte Mathematik 565 (2003), 1-11.
  31. Z. Jelonek, K. Kurdyka, Quantitative Generalized Bertini-Sard Theorem for smooth affine varieties, Discrete and Computational Geometry 34, (2005), 659-678.
  32. R. Guning, H. Rossi, Analytic functions of several complex variables, Prentice-Hall (1965).
  33. M. Goresky, R. MacPherson, Stratified Morse theory. Springer (1988).
  34. V. Guillemin, A. Pollack, Differential topology. Prentice-Hall (1974).
  35. H. V. Hà, D. T. Lê, Sur la topologie des polynômes complexes. Acta Math. Vietnam. 9 (1984), no. 1, 21-32.
  36. H. V. Hà, T. S. Pham, Minimizing polynomial functions, Acta Math. Vietnam. 32 (2007), no. 1, 71-82.
  37. H. V. Hà, T. S. Pham, Global optimization of polynomials using the truncated tangency variety and sums of squares, SIAM J. Optim. 19 (2008), no. 2, 941-951.
  38. K. Kurdyka, Ensembles semi-algébriques symétriques par arcs, Math. Ann. 281 (1988), 445- 462.
  39. K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Diff. Geom. 56 (2000), 67-92.
  40. A. Parusiński, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
  41. A. Parusiński, A note on singularities at infinity of complex polynomials, in "Symplectic Singu- larities and Geometry of Gauge fields", eds. R. Budzyński et al., Banach Center Publications 39, Warszawa (1997), 131-141.
  42. M. Raibaut, Motivic Milnor fibers of a rational function, C. R. Math. Acad. Sci. Paris 350 (2012), no. 9-10, 519-524.
  43. M. Safey El Din, Testing Sign Conditions on a Multivariate Polynomial and Applications, Math. Comput. Sci. 1 (2007), 177-207.
  44. M. Safey El Din, Computing the global optimum of a multivariate polynomial over the reals, ISSAC 2008 Proceedings, D. Jeffrey (eds), Austria (Hagenberg), 2008.
  45. P. Scheiblechner, On a generalization of Stickelberger's theorem, J. Symbolic Comput. 45 (2010), no. 12, 1459-1470.
  46. M. Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automor- phismes algébriques de l'espace C 2 , J. Math. Soc. Japan 26 (1974), 241-257.
  47. R. Thom, Ensembles et morphismes, stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240-284.