On asymptotic critical values of a complex polynomial
2003, Journal für die reine und angewandte Mathematik (Crelles Journal)
https://doi.org/10.1515/CRLL.2003.101Abstract
Let f : C n ! C be a polynomial of degree d. We prove that the set of asymptotic critical values of f (i.e. values for which Malgrange's Condition fails) has at most d nÀ1 À 1 points. We give an asymptotically sharp bound for the number of bifurcation points of f. We give also an algorithm to compute this set.
References (20)
- R. Benedetti, J.-J. Risler, Real Algebraic and Semi-algebraic Sets, Actualite ´s Mathe ´matiques, Hermann, 1990.
- S. A. Broughton, Milnor number and the topology of polynomial hypersurface, Invent. Math. 92 (1983), 165-178.
- S. K. Donaldson, Symplectic submanifolds and almost-complex geometry, J. Di¤. Geom. 44 (1996), 666-705.
- H. V. Ha, D. T. Le, Sur la topologie des polyno ˆmes complexes, Acta Math. Vietnamica 9 (1984), 21-32.
- H. V. Ha, Sur la fibration globale des polyno ˆmes de deux variables, CRAS 309 (1989), 231-234.
- H. V. Ha, Nombres de Łojasiewicz et singularite ´s a l'infini des polyno ˆmes de deux variables, CRAS 311 (1990), 429-432.
- Z. Jelonek, The set of points at which a polynomial map is not proper, Ann. Polon. Math. 58 (1993), 259-266.
- Z. Jelonek, Testing sets for properness of polynomial mappings, Math. Ann. 315 (1999), 1-35.
- K. Kurdyka, T. Mostowski and A. Parusin ´ski, Proof of the gradient conjecture of R. Thom, Ann. Math. 152 (2000), 763-762.
- K. Kurdyka, P. Orro, S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Di¤. Geom. 56 (2000), 67-92.
- M. Oka, L. Thanh, Note on estimation of the number of the critical values at infinity, Kodai Math. J. 17 (1994), 409-419.
- A. Parusin ´ski, On the bifurcation set of complex polynomial with isolated singularities at infinity, Compositio Math. 97 (1995), 369-384.
- A. Parusin ´ski, A note on singularities at infinity of complex polynomials, in: Symplectic Singularities and Geometry of Gauge fields, R. Budzyn ´ski et al., eds., Banach Center Publ. 39, Warszawa (1997), 131-141.
- F. Pauer, M. Pfeifhofer, The theory of Gro ¨bner basis, Enseign. Math. 34 (1988), 215-232.
- P. J. Rabier, Ehresmann's fibrations and Palais-Smale conditions for morphisms of Finsler manifolds, Ann. Math. 146 (1997), 647-691.
- A. Stasica, An e¤ective description of the Jelonek set, J. Pure Appl. Algebra 169 (2002), 321-326.
- B. Teissier, Sur trois questions de finitude en ge ´ome ´trie analytique re ´elle, appendix to F. Tre ´ves, On the local solvability and the local integrability of systems of vector fields, Acta Math. 151 (1983), 38-48.
- Y. Yomdin, The geometry of critical and near-critical values of di¤erentiable mappings, Math. Ann. 4 (1983), 495-515.
- J. P. Verdier, Stratifications de Whitney et The ´ore `me de Bertini-Sard, Invent. Math. 36 (1976), 295-312. Instytut Matematyki, Polska Akademia Nauk, S ´w. Tomasza 30, 31-027 Krako ´w, Poland e-mail: najelone@cyf-kr.edu.pl
- Laboratoire de Mathe ´matiques, Universite ´de Savoie and CNRS, UMR 5127, Campus Scientifique, 73376 Le Bourget du Lac cedex, France e-mail: kurdyka@univ-savoie.fr Eingegangen 10. Mai 2001, in revidierter Fassung 6. Mai 2002 Jelonek and Kurdyka, Asymptotic critical values