Academia.eduAcademia.edu

Outline

2 Continuous Cluster Categories I

2016

Abstract

In [8] we constructed topological triangulated categories Cc as stable categories of certain topological Frobenius categories Fc. In this paper we show that these categories have a cluster structure for certain values of c including c = π. The continuous cluster categories are those Cc which have cluster structure. We study the basic structure of these cluster categories and we show that Cc is isomorphic to an orbit category Dr/F s of the continuous derived category Dr if c = rπ/s. In Cπ, a cluster is equivalent to a discrete lamination of the hyperbolic plane. We give the representation theoretic interpretation of these clusters and laminations.

References (15)

  1. Apostolos Beligiannis and Nikolaos Marmaridis, Left triangulated categories arising from contravariantly finite subcategories, Comm. Algebra 22 (1994), no. 12, 5021-5036.
  2. A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), no. 4, 1035-1079.
  3. A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, Amer. J. Math. 133 (2011), no. 4, 835-887.
  4. Aslak Bakke Buan, Robert Marsh, Markus Reineke, Idun Reiten, and Gordana Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.
  5. P. Caldero, F. Chapoton, and R. Schiffler, Quivers with relations and cluster-tilted algebras, Algebr. Represent. Theory 9 (2006), no. 4, 359-376.
  6. H. Derksen, J. Weyman, and A. Zelevinsky, Selecta Math. 14 (2008), no. 1, 59-119.
  7. Dieter Happel, Triangulated categories in the representation theory of finite dimensional algebras, London Math. Soc. Lecture Note Ser., vol. 119, Cambridge Univ. Press, Cambridge, 1988.
  8. K. Igusa and G. Todorov, Continuous Frobenius categories, arXiv:1209.0038.
  9. K. Igusa and G. Todorov, Cluster categories coming from cyclic posets, in preparation.
  10. K. Igusa and G. Todorov, Continuous cluster categories of type D, in preparation.
  11. B. Keller, Chain complexes and stable categories, Manuscripta Math 67 (1990), 379-417.
  12. B. Keller, On triangulated orbit categories, Documenta Math 10 (2005), 551-581.
  13. B. Keller and I. Reiten, Acyclic Calabi-Yau categories, with an appendix by Michel Van den Bergh, Compos. Math. 144 (2008), 1332-1348.
  14. William P. Thurston, Geometry and topology of 3-manifolds, Princeton University, lecture notes, 1980.
  15. Adam-Christiaan van Roosmalen, Hereditary uniserial categories with Serre duality, arXiv:1011.6077v1.