Academia.eduAcademia.edu

Outline

The ubiquity of generalized cluster categories

2011, Advances in Mathematics

https://doi.org/10.1016/J.AIM.2010.10.028

Abstract

Associated with some finite dimensional algebras of global dimension at most 2, a generalized cluster category was introduced in [Ami08], which was shown to be triangulated and 2-Calabi-Yau when it is Hom-finite. By definition, the cluster categories of [BMR + 06] are a special case. In this paper we show that a large class of 2-Calabi-Yau triangulated categories, including those associated with elements in Coxeter groups from [BIRS09a], are triangle equivalent to generalized cluster categories. This was already shown for some special elements in [Ami08].

References (22)

  1. C. Amiot, O. Iyama, I. Reiten, and G. Todorov, Preprojective algebras and c-sortable words, preprint in preparation (2009).
  2. C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, to appear in Ann. Inst. Fourier (2008), arXiv:math. RT/0805.1035.
  3. A. B. Buan, O. Iyama, I. Reiten, and J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, Compos. Math. 145 (2009), 1035-1079.
  4. A. B. Buan, O. Iyama, I. Reiten, and D. Smith, Mutation of cluster-tilting objects and potentials, to appear in Amer. Journ. of Math. (2009), arXiv:math. RT/08043813.
  5. BMR + 06] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combina- torics, Adv. Math. 204 (2006), no. 2, 572-618.
  6. R. Bocklandt, Graded Calabi Yau algebras of dimension 3, J. Pure Appl. Algebra 212 (2008), no. 1, 14-32.
  7. H. Derksen, J. Weyman, and A. Zelevinsky, Quivers with potentials and their representations. I. Mutations, Selecta Math. (N.S.) 14 (2008), no. 1, 59-119.
  8. S. Fomin and A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529 (electronic).
  9. C. Geiss, B. Leclerc, and J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), no. 3, 589-632.
  10. Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. (2) 75 (2007), no. 3, 718-740.
  11. Cluster algebra structures and semi-canonical bases for unipotent groups, preprint (2007), arXiv:math. RT/0703039.
  12. Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 3, 825-876.
  13. C. Geiss and J. Schröer, Extension-orthogonal components of preprojective varieties, Trans. Amer. Math. Soc. 357 (2005), no. 5, 1953-1962 (electronic).
  14. O. Iyama and S. Oppermann, Stable categories of higher preprojective algebras, preprint in prepa- ration (2009).
  15. O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math. 172 (2008), no. 1, 117-168.
  16. B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4) 27 (1994), no. 1, 63-102.
  17. On triangulated orbit categories, Doc. Math. 10 (2005), 551-581 (electronic).
  18. Deformed Calabi-Yau completions, arXiv:math. RT/09083499.
  19. B. Keller and I. Reiten, Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, Adv. Math. 211 (2007), no. 1, 123-151.
  20. Acyclic Calabi-Yau categories, Compos. Math. 144 (2008), no. 5, 1332-1348, With an appendix by Michel Van den Bergh.
  21. B. Keller and D. Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 225-228.
  22. R. Marsh, M. Reineke, and A. Zelevinsky, Generalized associahedra via quiver representations, Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186 (electronic).