General Reggeon Vertex in Dual Theory
1971, Progress of Theoretical Physics
https://doi.org/10.1143/PTP.46.1192Abstract
On the basis of Fubini and Veneziano's manifestly dual symmetric operator expression for a dual amplitude, we perform multiple-factorization of dual amplitude in Shapiro's general factorization scheme. In contrast with other works, our method of multiple-factorization is completely symmetric with respect to Reggeon legs. A new general form of Reggeon vertex is obtained, which includes Lovelace's vertex as a particular limiting case, and Olive's one as a special case. Our general Reggeon vertex has simple gauge and twisting transformation properties. The duality relation is satisfied with the KSV change of propagator variables, as an identity of, integrands. *> This is Alessandrini et al.'s canonical form.W **> t means transpose. This relation follows from the fact that the matrices X
References (16)
- K. Kikkawa, B. Sakita and M. A. Virasoro, Phys. Rev. 184 (1969), 1701. K. Kikkawa, S. A. Klein, B. Sakita and M. A. Virasoro, Phys. Rev. D 1 (1970), 3258.
- S. Sciuto, Lett. Nuovo Cim. 2 (1969), 411.
- G. Carborne and S. Sciuto, Lett. Nuovo Cim. 3 (1970), 246.
- M. Kosterlitz and D. A. Wray, Lett. Nuovo Cim. 3 (1970), 491.
- L. Yu, Phys. Rev. Dl (1970), 1010, 2256.
- L. Caneshi, A. Schwimmer and G. Veneziano, Phys. Letters 30B (1969), 356. L. Caneshi and A. Schwimmer, Lett. Nuovo Cim. 3 (1970), 213. F. Guerin, Lett. Nuovo Cim. 2 (1970), 895.
- M. Ida, H. Matsumoto and S. Y azaki, Prog. Theor. Phys. 44 (1970), 456. See also: D. ]. Gross and ].
- H. Schwartz, Nucl. Phys. B23 (1970), 333.
- S. Fubini and G. Veneziano, Nuovo Cim. 67A (1970), 29.
- A. Shapiro, Phys. Rev. Dl (1970), 3371.
- C. Lovelace, Phys. Letters 32B (1970), 490.
- D. I. Olive, preprint DAMTP 70/33.
- See e.g. A. 0. Barut and C. Fronsdal, Proc. Roy. Soc. A287 (1965), 532. See also : L. Clavelli and P. Ramond, Phys. Rev. D2 (1970), 973.
- V. Alessandrini, D. Amati, M. LeBellac and D. Olive, CERN preprint, TH-1160; Phys. Letters 32B (1970) , 285.
- D. Amati, M. LeBellac and D. Olive, Nuovo Cim. 66A (1970), 831.
- E. Donini and S. Sciuto, Ann. of Phys. 58 (1970), 388. Note added in proof: For finite e, Eq. (2•5) is not mathematically correct definition. Precisely speaking, it should be understood as the limit e-70 of the equation co { (az+ {j) (r+8/z)} -• (P(z) I ±n) = 21 R~~ (zl ±m).