Abstract
This paper presents a fast and realistic model for the synthetic reproduction of night sky appearance. The basic elements of the nocturnal scene such as the airglow, the zodiacal light together with its Gegenschein, the integrated starlight as well as the scattered moonlight along with the effect of any artificial illumination are processed separately. Computation of the position and spectral luminosity of the visible planets and stars is demonstrated. Algorithm for a dynamic application of the Purkinje shift has been included. By integrating the model into the former daylight/twilight sky rendering framework of the author, this work enables a seamless infrastructure for a complete generation of 7/24 sky scenes with alterable turbidity and altitude, also comprising solar eclipses. Additionally, transition from false to true dawn is discussed through a deeptwilight analysis.
References (41)
- Henrik Wann Jensen, Simon Premože, Peter Shirley, William B. Thompson, James A. Ferwerda, "Night Rendering", 2000
- Henrik Wann Jensen, Frédo Durand, Michael M. Stark, Simon Premože, Julie Dorsey, Peter Shirley, "A Physically- Based Night Sky Model", 2001
- Daniel Müller, Juri Engel, Jürgen Döllner, "Single-Pass Rendering of Day and Night Sky Phenomena", 2012
- Ch. Leinert, S. Bowyer, L.K. Haikala, M.S. Hanner, M.G. Hauser, A.-Ch. Levasseur-Regourd, I. Mann, K. Mattila, W.T. Reach, W. Schlosser, H.J. Staude, G.N. Toller, J.L. Weiland, J.L. Weinberg, A.N. Witt, "The 1997 Reference of Diffuse Night Sky Brightness", 1998
- F. Patat, "UVBRI Night Sky Brightness During Sunspot Maximum at ESO-Paranal", 2002
- F. Patat, "The Dancing Sky: 6 Years of Night-Sky Observations at Cerro Paranal", 2008
- S. Noll, W. Kausch, M. Barden, A. M. Jones, C. Szyszka, S. Kimeswenger, J. Vinther, "An Atmospheric Radiation Model for Cerro Paranal: I. The Optical Spectral Range", 2012
- A. Jones, S. Noll, W. Kausch, C. Szyszka, S. Kimeswenger, "An Advanced Scattered Moonlight Model for Cerro Paranal", 2013
- Stefan Noll, Wolfgang Kausch, Marco Barden, Amy M. Jones, Cezary Szyszka, Stefan Kimeswenger, "The Cerro Paranal Advanced Sky Model", 2013
- Peter Yoachim, Michael Coughlin, George Z. Angeli, Charles F. Claver, Andrew J. Connolly, Kem Cook, Scott Daniel, Željko Ivezić, R. Lynne Jones, Catherine Petry, Michael Reuter, Christopher Stubbs, Bo Xin, "An Optical to IR Sky Brightness Model for the LSST", 2016
- Abdurrahman Özlem, "Fast Sky Rendering for Daylight & Twilight", 2021
- Abdurrahman Özlem, "Simulation of the Moon's Topocentric Appearance", 2022
- Ferdinando Patat, "The Effects of Improper Lighting on Professional Astronomical Observations", 2010
- John C. Barentine, "Night Sky Brightness Measurement, Quality Assessment and Monitoring", 2021
- J. L. Jorgensen, M. Benn, J. E. P. Connerney, T. Denver, P. S. Jorgensen, A. C. Andersen, S. J. Bolton, "Distribution of Interplanetary Dust Detected by the Juno Spacecraft and its Contribution to the Zodiacal Light", 2020
- R. F. Jameson, "Observations and a Model of the Zodiacal Light", 1970
- F. E. Roach, "A Photometric Model of the Zodiacal Light", 1972
- Marsha R. Torr, D. G. Torr, R. Stencel, "Zodiacal Light Surface Brightness Measurements by Atmosphere Explorer- C", 1979
- Hiroshi Kimura & Ingrid Man, "Brightness of the Solar F-corona", 1998
- P. L. Lamy, H. Gilardy, A. Llebaria, "Observation of the Solar F-corona from Space", 2022
- Masateru Ishiguro, Hongu Yang, Fumihiko Usui, Jeonghyun Pyo, Munetaka Ueno, Takafumi Ootsubo, Suk Minn Kwon, Tadashi Mukai, "High-resolution Imaging of the Gegenschein and the Geometric Albedo of Interplanetary Dust", 2013
- Kevin Krisciunas & Bradley E. Schaefer, "A Model of the Brightness of Moonlight", 1991
- Hugh H. Kieffer & Thomas C. Stone, "The Spectral Irradiance of the Moon", 2005
- Zoltán Kolláth, Dénes Száz, Kai Pong Tong, Kornél Kolláth, "The Colour of the Night Sky", 2020
- Andreas Jechow & Franz Hölker, "Snowglow -The Amplification of Skyglow by Snow and Clouds CAN Exceed Full Moon Illuminance in Suburban Areas", 2019
- Abdurrahman Özlem, "Red-to-White Transition of Dusk Horizon", 2022
- P. Bretagnon & G. Francou, "Planetary Theories in Rectangular and Spherical Variables -VSOP 87 Solutions", 1988 [28] Anthony Mallama, "Computing Apparent Planetary Magnitudes for the Astronomical Almanac", 2018
- Abdurrahman Özlem, "Analytic Derivation & Topographic Application of the Crescent Visibility Parabola Function", 2018
- C. Emde & B. Mayer, "Simulation of Solar Radiation during a Total Solar Eclipse: A Challenge for Radiative Transfer", 2007
- Yudhiakto Pramudya & Muchlas Arkanuddin, "The Sky Brightness Measurement during the 2016 Solar Eclipse in Ternate", 2016
- A.F.C. Wijaya, C.P. Asmoro, A.A. Rochman, T.R. Ramalis, J.A. Utama, N.D. Ardi, Amsor, M.G. Nugraha, D. Saepuzaman, A. Sutiadi, D. Nurfiani, "Zenith Sky Brightness and Celestial Objects Visibility during Total Solar Eclipse on March 9, 2016 at Terentang Beach Bangka Island", 2016
- Krukarius, "Sky Brightness Changes during Total Solar Eclipse", 2019
- Abdurrahman Özlem, "Definition & Calculation of Prayer Timings", 2017
- Andrew Crumey, "Human Contrast Threshold and Astronomical Visibility", 2014
- William M. Irvine, Theodore Simon, Donald H. Menzel, C. Pikoos, Andrew T. Young, "Multicolor Photoelectric Photometry of the Brighter Planets -III. Observations from Boyden Observatory", 1968
- Xh[4] = 5.19663•cos(0.59945+ 52.96910•t) +0.12594•cos(0.94912+ 105.93819•t) +0.01501•cos(0.73175+ 52.25774•t) +0.01476•cos(3.61737+ 53.68045•t) +0.00458•cos(1.29884+ 158.90729•t) +0.00302•cos(5.17373+ 0.71135•t) +0.00386•cos(2.01230+ 10.30928•t) +0.00194•cos(5.02580+ 42.65982•t) +0.00151•cos(6.12003+ 11.02063•t) +0.00145•cos(5.55981+ 63.27837•t) +0.00134•cos(0.87649+ 21.32991•t) +0.00103•cos(6.19325+ 105.22684•t) +0.00114•cos(.01567 + 116.24747•t) -0.36663 -t•.00088
- Yh[4] = 5.19520•cos(5.3120 + 52.96910•t) +0.12593•cos(5.66160+ 105.93819•t) +0.01508•cos(5.43935+ 52.25774•t) +0.01476•cos(2.04680+ 53.68045•t) +0.00458•cos(6.01129+ 158.90729•t) +0.00301•cos(3.60948+ 0.71135•t) +0.00378•cos(3.53007+ 10.30928•t) +0.00192•cos(3.45691+ 42.65982•t) +0.00146•cos(4.62267+ 11.02063•t) +0.00139•cos(4.00075+ 63.27837•t) +0.00133•cos(5.62185+ 21.32991•t) +0.00102•cos(4.57595+ 105.22684•t) +0.00114•cos(4.72982+ 116.24747•t) -0.09364 -t•.00169
- 71135•t) +0.01184•cos(1.34638+ 41.94846•t) +0.01246•cos(0.60367+ 11.02063•t) +0.01099•cos(4.08609+ 63.98973•t) +0.00701•cos(1.13611+ 31.63919•t) +0.00434•cos(5.42475+ 52.96910•t) +0.00373•cos(4.71309+ 43.37117•t) +0.00373•cos(0.66422+ 10.30928•t) -0.79388 + t•(.00537 +0.00309•cos(2.70347+ 42.65982•t) +0.00274•cos(4.26668+ 20.61855•t) +0.00265•cos(3.76132+ 22.04126•t))
- Zh[5] = 0.41357•cos(3.60234+ 21.32991•t) +0.01148•cos(2.85128+ 42.65982•t) +0.00329•cos(0.57121+ 20.61855•t) +0.00287•cos(3.48074+ 22.04126•t) +0.01214 + t•(-.00053+
- 813304•t) +0.13506•cos(1.92953+ 7.62661•t) +0.15707•cos(4.82540+
- = -9.39500 -3.70000E-04•αp +6.16E-04•αp 2