Academia.eduAcademia.edu

Outline

Basic Scene Generation for Night Sky

2023

https://doi.org/10.13140/RG.2.2.14225.85603

Abstract

This paper presents a fast and realistic model for the synthetic reproduction of night sky appearance. The basic elements of the nocturnal scene such as the airglow, the zodiacal light together with its Gegenschein, the integrated starlight as well as the scattered moonlight along with the effect of any artificial illumination are processed separately. Computation of the position and spectral luminosity of the visible planets and stars is demonstrated. Algorithm for a dynamic application of the Purkinje shift has been included. By integrating the model into the former daylight/twilight sky rendering framework of the author, this work enables a seamless infrastructure for a complete generation of 7/24 sky scenes with alterable turbidity and altitude, also comprising solar eclipses. Additionally, transition from false to true dawn is discussed through a deeptwilight analysis.

References (41)

  1. Henrik Wann Jensen, Simon Premože, Peter Shirley, William B. Thompson, James A. Ferwerda, "Night Rendering", 2000
  2. Henrik Wann Jensen, Frédo Durand, Michael M. Stark, Simon Premože, Julie Dorsey, Peter Shirley, "A Physically- Based Night Sky Model", 2001
  3. Daniel Müller, Juri Engel, Jürgen Döllner, "Single-Pass Rendering of Day and Night Sky Phenomena", 2012
  4. Ch. Leinert, S. Bowyer, L.K. Haikala, M.S. Hanner, M.G. Hauser, A.-Ch. Levasseur-Regourd, I. Mann, K. Mattila, W.T. Reach, W. Schlosser, H.J. Staude, G.N. Toller, J.L. Weiland, J.L. Weinberg, A.N. Witt, "The 1997 Reference of Diffuse Night Sky Brightness", 1998
  5. F. Patat, "UVBRI Night Sky Brightness During Sunspot Maximum at ESO-Paranal", 2002
  6. F. Patat, "The Dancing Sky: 6 Years of Night-Sky Observations at Cerro Paranal", 2008
  7. S. Noll, W. Kausch, M. Barden, A. M. Jones, C. Szyszka, S. Kimeswenger, J. Vinther, "An Atmospheric Radiation Model for Cerro Paranal: I. The Optical Spectral Range", 2012
  8. A. Jones, S. Noll, W. Kausch, C. Szyszka, S. Kimeswenger, "An Advanced Scattered Moonlight Model for Cerro Paranal", 2013
  9. Stefan Noll, Wolfgang Kausch, Marco Barden, Amy M. Jones, Cezary Szyszka, Stefan Kimeswenger, "The Cerro Paranal Advanced Sky Model", 2013
  10. Peter Yoachim, Michael Coughlin, George Z. Angeli, Charles F. Claver, Andrew J. Connolly, Kem Cook, Scott Daniel, Željko Ivezić, R. Lynne Jones, Catherine Petry, Michael Reuter, Christopher Stubbs, Bo Xin, "An Optical to IR Sky Brightness Model for the LSST", 2016
  11. Abdurrahman Özlem, "Fast Sky Rendering for Daylight & Twilight", 2021
  12. Abdurrahman Özlem, "Simulation of the Moon's Topocentric Appearance", 2022
  13. Ferdinando Patat, "The Effects of Improper Lighting on Professional Astronomical Observations", 2010
  14. John C. Barentine, "Night Sky Brightness Measurement, Quality Assessment and Monitoring", 2021
  15. J. L. Jorgensen, M. Benn, J. E. P. Connerney, T. Denver, P. S. Jorgensen, A. C. Andersen, S. J. Bolton, "Distribution of Interplanetary Dust Detected by the Juno Spacecraft and its Contribution to the Zodiacal Light", 2020
  16. R. F. Jameson, "Observations and a Model of the Zodiacal Light", 1970
  17. F. E. Roach, "A Photometric Model of the Zodiacal Light", 1972
  18. Marsha R. Torr, D. G. Torr, R. Stencel, "Zodiacal Light Surface Brightness Measurements by Atmosphere Explorer- C", 1979
  19. Hiroshi Kimura & Ingrid Man, "Brightness of the Solar F-corona", 1998
  20. P. L. Lamy, H. Gilardy, A. Llebaria, "Observation of the Solar F-corona from Space", 2022
  21. Masateru Ishiguro, Hongu Yang, Fumihiko Usui, Jeonghyun Pyo, Munetaka Ueno, Takafumi Ootsubo, Suk Minn Kwon, Tadashi Mukai, "High-resolution Imaging of the Gegenschein and the Geometric Albedo of Interplanetary Dust", 2013
  22. Kevin Krisciunas & Bradley E. Schaefer, "A Model of the Brightness of Moonlight", 1991
  23. Hugh H. Kieffer & Thomas C. Stone, "The Spectral Irradiance of the Moon", 2005
  24. Zoltán Kolláth, Dénes Száz, Kai Pong Tong, Kornél Kolláth, "The Colour of the Night Sky", 2020
  25. Andreas Jechow & Franz Hölker, "Snowglow -The Amplification of Skyglow by Snow and Clouds CAN Exceed Full Moon Illuminance in Suburban Areas", 2019
  26. Abdurrahman Özlem, "Red-to-White Transition of Dusk Horizon", 2022
  27. P. Bretagnon & G. Francou, "Planetary Theories in Rectangular and Spherical Variables -VSOP 87 Solutions", 1988 [28] Anthony Mallama, "Computing Apparent Planetary Magnitudes for the Astronomical Almanac", 2018
  28. Abdurrahman Özlem, "Analytic Derivation & Topographic Application of the Crescent Visibility Parabola Function", 2018
  29. C. Emde & B. Mayer, "Simulation of Solar Radiation during a Total Solar Eclipse: A Challenge for Radiative Transfer", 2007
  30. Yudhiakto Pramudya & Muchlas Arkanuddin, "The Sky Brightness Measurement during the 2016 Solar Eclipse in Ternate", 2016
  31. A.F.C. Wijaya, C.P. Asmoro, A.A. Rochman, T.R. Ramalis, J.A. Utama, N.D. Ardi, Amsor, M.G. Nugraha, D. Saepuzaman, A. Sutiadi, D. Nurfiani, "Zenith Sky Brightness and Celestial Objects Visibility during Total Solar Eclipse on March 9, 2016 at Terentang Beach Bangka Island", 2016
  32. Krukarius, "Sky Brightness Changes during Total Solar Eclipse", 2019
  33. Abdurrahman Özlem, "Definition & Calculation of Prayer Timings", 2017
  34. Andrew Crumey, "Human Contrast Threshold and Astronomical Visibility", 2014
  35. William M. Irvine, Theodore Simon, Donald H. Menzel, C. Pikoos, Andrew T. Young, "Multicolor Photoelectric Photometry of the Brighter Planets -III. Observations from Boyden Observatory", 1968
  36. Xh[4] = 5.19663•cos(0.59945+ 52.96910•t) +0.12594•cos(0.94912+ 105.93819•t) +0.01501•cos(0.73175+ 52.25774•t) +0.01476•cos(3.61737+ 53.68045•t) +0.00458•cos(1.29884+ 158.90729•t) +0.00302•cos(5.17373+ 0.71135•t) +0.00386•cos(2.01230+ 10.30928•t) +0.00194•cos(5.02580+ 42.65982•t) +0.00151•cos(6.12003+ 11.02063•t) +0.00145•cos(5.55981+ 63.27837•t) +0.00134•cos(0.87649+ 21.32991•t) +0.00103•cos(6.19325+ 105.22684•t) +0.00114•cos(.01567 + 116.24747•t) -0.36663 -t•.00088
  37. Yh[4] = 5.19520•cos(5.3120 + 52.96910•t) +0.12593•cos(5.66160+ 105.93819•t) +0.01508•cos(5.43935+ 52.25774•t) +0.01476•cos(2.04680+ 53.68045•t) +0.00458•cos(6.01129+ 158.90729•t) +0.00301•cos(3.60948+ 0.71135•t) +0.00378•cos(3.53007+ 10.30928•t) +0.00192•cos(3.45691+ 42.65982•t) +0.00146•cos(4.62267+ 11.02063•t) +0.00139•cos(4.00075+ 63.27837•t) +0.00133•cos(5.62185+ 21.32991•t) +0.00102•cos(4.57595+ 105.22684•t) +0.00114•cos(4.72982+ 116.24747•t) -0.09364 -t•.00169
  38. 71135•t) +0.01184•cos(1.34638+ 41.94846•t) +0.01246•cos(0.60367+ 11.02063•t) +0.01099•cos(4.08609+ 63.98973•t) +0.00701•cos(1.13611+ 31.63919•t) +0.00434•cos(5.42475+ 52.96910•t) +0.00373•cos(4.71309+ 43.37117•t) +0.00373•cos(0.66422+ 10.30928•t) -0.79388 + t•(.00537 +0.00309•cos(2.70347+ 42.65982•t) +0.00274•cos(4.26668+ 20.61855•t) +0.00265•cos(3.76132+ 22.04126•t))
  39. Zh[5] = 0.41357•cos(3.60234+ 21.32991•t) +0.01148•cos(2.85128+ 42.65982•t) +0.00329•cos(0.57121+ 20.61855•t) +0.00287•cos(3.48074+ 22.04126•t) +0.01214 + t•(-.00053+
  40. 813304•t) +0.13506•cos(1.92953+ 7.62661•t) +0.15707•cos(4.82540+
  41. = -9.39500 -3.70000E-04•αp +6.16E-04•αp 2