Church’s thesis meets the N-body problem
2006, Applied Mathematics and Computation
https://doi.org/10.1016/J.AMC.2005.09.077Abstract
"Church's thesis" is at the foundation of computer science. We point out that with any particular set of physical laws, Church's thesis need not merely be postulated, in fact it may be decidable. Trying to do so is valuable. In Newton's laws of physics with point masses, we outline a proof that Church's thesis is false; phsyics is unsimulable. But with certain more realistic laws of motion, incorporating some relativistic effects, the Extended Church's thesis is true. Along the way we prove a useful theorem: a wide class of ordinary differential equations may be integrated with "polynomial slowdown." Warning: we cannot give careful definitions and caveats in this abstract-you must read the full text-and interpreting our results is not trivial.
References (53)
- R. Arnowitt, S. Deser, and C.W. Misner. The dynamics of general relativity. In L. Witten, editor, General relativity, an introduction to current research, pages 227-265. Wiley, 1962.
- B. Bertotti. On gravitational motion. Il Nuovo Cimento, 4(4):898-906, October 1956.
- B.Bertotti & J.Plebanskii: Theory of grav- itational perturbations in the fast motion approximation. em Annals Physics NY 11 (1960) 169-200.
- R.W. Brockett. Smooth dynamical systems which realize arithmetical and logical opera- tions. In H. Nijmeijer and J.M. Schumacher, editors, Three decades of mathematical sys- tems theory, number 135 in Springer-Verlag lecture notes in control and information sci- ence, pages 19-30. Springer-Verlag, 1989.
- J.C. Butcher. Coefficients for the study of Runge-Kutta integration processes. J. Aus- tralian Math. Soc., 3:185-201, 1963.
- J.C. Butcher. Implicit Runge-Kutta pro- cesses. Math. of Computation, 18:50-64, 1964.
- J.C. Butcher. The numerical analysis of ordi- nary differential equations, Runge Kutta and general linear methods. J. Wiley, 1987.
- J. Canny and J.H. Reif. New lower bounds for robot motion planning problems. In 28th IEEE Symposium on Foundations of Com- puter Science, pages 49-60. IEEE, 1987.
- S. Chandrasekhar, V. Nutku, and Paul F. Es- posito. Post-newtonian equations of hydro- dynamics in general relativity. Astrophysical Journal. I: AJ 142,4 (November 1965) 1488- 1512, II: AJ 158,1 (October 1969) 55-79, III: AJ 160,1 (April 1970) 153-179.
- George W. Collins. The foundations of celes- tial mechanics. Pachart publishing, Tuscon AZ, 1989.
- G. Dahlquist. Convergence and stability in the numerical integration of ordinary dif- ferential equations. Math. Scand., 4:33-53, 1956.
- G. Dahlquist. Stability and error bounds in the integration of ordinary differential equa- tions. Trans. Royal Inst. Technol. Stockholm, (130), 1956.
- Thibault Damour. Gravitational radia- tion and the motion of compact bodies. In Nathalie Deruelle and Tsvi Piran, edi- tors, Gravitational Radiation, pages 59-144. North-Holland, 1982.
- T. Damour and Gerhard Schäfer. La- grangians for n point masses and the second postnewtonian approximation of general rel- ativity. General Relativity and Gravitation, 17(9):879-905, 1985.
- Steven Detweiler & Lee H., Brown Jr.: Post- Minkowski expansion of general relativity, Phys. Rev. D (3) 56,2 (1997) 826-841.
- A. Eddington and G. Clark. The problem of n bodies in general relativity theory. Proc. Royal Soc., 166:465-475, 1938.
- A. Einstein and L. Infeld. On the motion of particles in general relativity. Canad. J. Math., 1:209-241, 1949.
- A. Einstein, L. Infeld, and B. Hoffman. The gravitational equations and the problem of motion. I: Annals Math. (Princeton) 39 (1938) 65-100, II: Annals Math. (Princeton) 41,2 (1940) 455-464.
- L. Flamm. Beitrage zur Einsteinschen Grav- itationstheorie. Zeitschrift f. Physik, 17:448- 454, 1916.
- C.W. Gear. Algorithm 407, difsub, for solution of ordinary differential equations. Communications Assoc. Comput. Machin- ery, 14:185-190, 1971.
- Joseph L. Gerver. The existence of pseudo- collisions in the plane. J. Differential Equa- tions, 89:1-68, 1991.
- G. Hall, J.M. Watt, and (many contribu- tors). Modern Numerical methods for Ordi- nary Differential Equations. Clarendon Press Oxford, 1976.
- George Hall. Stability analysis of predictor- corrector algorithms of Adams type. SIAM J. Numer. Anal., 11(3):494-505, June 1974.
- Stephen R. Hawking. Black holes in general relativity. Commun. Math. Phys., 25:152- 176, 1972.
- P. Henrici. Discrete Variable methods in or- dinary differential equations. Wiley, 1962.
- L. Infeld and A. Scheidegger. Radiation and gravitational equations of motion. Canad. J. Math, 3:195-207, 1951.
- L. Infeld and A. Schild. On the motion of test particles in general relativity. Reviews in Modern Physics, 21:408-413, 1949.
- Rolf Jeltsch and Olavi Nevanlinna. Stability and accuracy of time discretizations for the initial value problem. Numerische Math. I: 37 (1981) 61-91, II: 40 (1982) 245-296.
- R. P. Kerr. The Lorentz-covariant approxi- mation method in general relativity. Il Nuovo Cimento. I: 13,3 (August 1959) 469-491;
- II (second order): 13,3 (August 1959) 492- 502; III (Einstein-Maxwell field): 13,4 (Au- gust 1959) 673-689; IV (quasi-static approx.): 16,1 (April 1960) 26-62.
- D.Kleppner: The gem of general relativity, Physics Today 46 (April 1993) 9-11.
- Ker-I Ko. On the computational complexity of ordinary differential equations. Informa- tion and Control, 58(1-3):157-194, 1983.
- Martin D. Kruskal. Maximal extension of Schwarzschild metric. Physical review, 119:1743-1745, 1960.
- H.A. Lorentz and J. Droste. (1917 paper). In Collected papers of H.A.Lorentz (volume 5), pages 330-, The Hague, 1937. Nijhoff.
- Yuri V. Matiyasevich. Hilbert's Tenth Prob- lem. MIT Press, Cambridge MA, 1993.
- Marvin L. Minsky. Computation: finite and infinite machines. Prentice Hall, 1967.
- C.W. Misner, K.S. Thorne, and J.A. Wheeler. Gravitation. Freeman, 1973.
- Christopher Moore. Unpredictability and un- decidability in dynamical systems. Physical Review Letters, 64(20):2354-2357, May 1990.
- Christos H. Papadimitriou, Kenneth Stei- glitz: Combinatorial optimization: algo- rithms and complexity Dover Publications 1998.
- John Preskill. Reliable quantum computers. Talk at ITP Conf. on Quantum Coherence and Decoherence, 15-18 Dec. 1996; Quant- ph/9705031
- D.G. Saari. Collisions are of first category. Proc. Amer. Math. Soc., 47:442-445, 1975.
- D.G. Saari and N.D. Hulkower. On the manifolds of total collapse... for the n-body problem. J. Differential Equations, 41:27-43, 1981.
- Gerhard Schäfer. The gravi- tational quadropole radiation-reaction force and the canonical formalism of ADM. An- nals of Physics (NY), 161:81-, 1985.
- Gerhard Schäfer. The ADM hamiltonian at the postlinear approximation. General Rela- tivity and Gravitation, 18(3):255-270, 1986.
- Peter W. Shor. Polynomial time algorithms for prime factorization and discrete loga- rithms on a quantum computer, SIAM J. Computing, 26: 1484-1509, 1997.
- Warren D. Smith.
- Church's thesis meets quantum mechanics, http://math.temple.edu/ wds/homepage/works.html #49.
- Warren D. Smith. Turing machine engineer- ing and Immortality. http://math.temple.edu/ wds/homepage/works.html #74.
- Alan M. Turing. On computational num- bers with an application to the entschei- dungsproblem. Proc London Math Soc., 42:230-265, 1936. correction: PLMS 43 (1937) 544-546.
- Sheldon Weinberg. Gravitation and Cosmol- ogy. Wiley, 1972.
- C.M. Will and K. Nordtvedt Jr. Conserva- tion laws and preferred frames in general rel- ativity. Astrophys. J., 177:757-774, 1972.
- Z. Xia. The existence of noncollision singu- larities in the n-body problem. Annals Math., 135(3):411-468, 1992.
- Wojciech H. Zurek. Decoherence and the transition from quantum to classical. Physics Today, pages 36-44, October 1991.