Academia.eduAcademia.edu

Outline

Discussion on Sixty years journey of the Indian Parliament

2017

https://doi.org/10.3303/CET2186022

Abstract

Enzymatic hydrolysis is an essential step in the lignocellulosic biomass treatment for the conversion of cellulose and hemicellulose into fermentable sugars. In the present study, a physical steam explosion (200°C) and chemical alkaline pre-hydrolysis (10% v/v) were applied to hemp (Cannabis sativa L.) biomass, to verify the effectiveness of different pretreatment processes, in order to increase enzymatic hydrolysis and the final sugar yield. The enzymatic degradations were carried out also utilizing extremophilic microorganisms, exploited as a source of (hemi)cellulases to be used as components of the enzymatic cocktail applied in the bioconversion into fermentable sugars for production of second generation ethanol and high value products. Alkaline pretreatment showed to be superior over the physical method with respect to the rate of enzymatic hydrolysis, with the obtainment of an hydrolysis yields of 90% xylose and 40% glucose, respectively.

References (19)

  1. Andre C.M., Hausman J.F., Guerriero G., 2016, Cannabis sativa: The Plant of the Thousand and One Molecules, Front. Plant Sci., 7, 19.
  2. Anqi J., Linjing J., Deepak K., Chang G.Y., 2021, Recent Advancements in Biological Conversion of Industrial Hemp for Biofuel and Value-Added Products. Fermentation, 7, 6.
  3. Biely, P., Hirch, J., la Grange, D.C., Van Zy, l.W.H., Prior, B.A., 2000, A chromogenic substrate for - xylosidase coupled assay of -glucuronidase, Ann. Biochem., 286, 289-294.
  4. Biely P., Mislovicová D., Toman R., 1985, Soluble chromogenic substrates for the assay of endo-1,4-- xylanases and endo-1,4--glucanases, Anal. Biochem., 144(1), 142-146.
  5. Dasa L., Liua E., Saeeda A., Williams D.W., Hud H., Lid C., Rayd A.E., Shi J., 2017, Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum. Bioresour. Technol., 244 (1), 641-649.
  6. Davis M.W., 1998. A rapid modified method for compositional carbohydrate analysis of lignocellulosics by high pH anion exchange chromatography with pulsed amperometric detection (HPAEC/PAD). J. Wood Chem. Technol., 18, 235-52.
  7. Gumuskaya E., Usta M., Balaban M., 2007, Carbohydrate components and crystralline structure of organosolv hemp (Cannabis sativa L.) bast fibers pulp. Bioresour. Technol., 98, 491-497.
  8. Gunnarsson I.B., Kuglarz M., Karakashev D., Angelidaki I., 2015, Thermochemical pretreatments for enhancing succinic acid production from industrial hemp (Cannabis sativa L.), Bioresour. Technol., 182, 58-66.
  9. Hendricks A.T., Zeeman G., 2009, Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour Technol., 100, 10-18.
  10. Khattab, M.M., Dahman, Y., 2019, Production and recovery of poly-3-hydroxybutyrate bioplastics using agro- industrial residues of hemp hurd biomass, Bioprocess Biosyst. Eng., 42, 1115-1127.
  11. Kreuger, E., Sipos, B., Zacchi, G., Svensson, S.E., Björnsson, L., 2011, Bioconversion of industrial hemp to ethanol and methane: The benefits of steam pretreatment and co-production, Bioresour.. Technol., 102, 3457-3465.
  12. Kuglarz, M., Alvarado-Morales, M., Karakashev, D., Angelidaki, I., 2016, Integrated production of cellulosic bioethanol and succinic acid from industrial hemp in a biorefinery concept, Bioresour. Technol., 200, 639- 647.
  13. Liguori R., Ionata E., Marcolongo L., Vandenberghe L.P., La Cara F., Faraco V., 2015, Optimization of Arundo donax Saccharification by (Hemi)cellulolytic Enzymes from Pleurotus ostreatus, Biomed Res Int., 2015, 951871.
  14. Marcolongo L., Ionata E., La Cara F., Amore A., Giacobbe S., Pepe O., Faraco V.., 2014, The effect of Pleurotus ostreatus arabinofuranosidase and its evolved variant in lignocellulosic biomasses conversion, Fungal Genet Biol., 72, 162-167.
  15. Muhammad Saif U.R., Naim R., Ameena S., Tariq M., Jong-In H., 2013, Potential of bioenergy production from industrial hemp (Cannabis sativa): Pakistan perspective. Renewable and Sustainable Energy Reviews, 18, 154-164.
  16. Phummala K., Imai T., Reungsang A., Higuchi T., Sekine M., Yamamoto K., Kanno A., 2015, Optimization of Enzymatic Hydrolysis for Pretreated Wood Waste by Response Surface Methodology in Fermentative Hydrogen Production, Journal of Water and Environment Technology, 13(2), 153-166.
  17. Viswanathan, M.B., Park, K., Cheng, M.H., Cahoon, E.B., Dweikat, I., Clemente, T., Singh, V., 2020, Variability in structural carbohydrates, lipid composition, and cellulosic sugar production from industrial hemp varieties, Ind. Crops Prod., 157, 112906.
  18. Zhao, J., Xu, Y., Wang, W., Griffin, J., Roozeboom, K., Wang, D., 2020a, Bioconversion of industrial hemp biomass for bioethanol production: A review, Fuel, 281, 118725.
  19. Zhao J., Xu Y., Zhang M., Wang D., 2020b, Integrating bran starch hydrolysates with alkaline pretreated soft wheat bran to boost sugar concentration. Bioresour. Technol., 302, 122826.