Academia.eduAcademia.edu

Outline

Geometric mechanics and the dynamics of asteroid pairs

2005, Dynamical Systems

Abstract

The purpose of this paper is to describe the general setting for the application of techniques from geometric mechanics and dynamical systems to the problem of asteroid pairs. It also gives some preliminary results on transport calculations and the associated problem of calculating binary asteroid escape rates. The dynamics of an asteroid pair, consisting of two irregularly shaped asteroids interacting through their gravitational potential is an example of a full body problem or FBP in which two or more extended bodies interact. One of the interesting features of the binary asteroid problem is that there is coupling between their translational and rotational degrees of freedom. General FBPs have a wide range of other interesting aspects as well, including the 6-DOF guidance, control, and dynamics of vehicles, the dynamics of interacting or ionizing molecules, the evolution of small body, planetary, or stellar systems, and almost any other problem where distributed bodies interact with each other or with an external field. This paper focuses on the specific case of asteroid pairs using techniques that are generally applicable to many other FBPs. This particular full 2-body problem (F2BP) concerns the dynamical evolution of two rigid bodies mutually interacting via a gravitational field. Motivation comes from planetary science, where these interactions play a key role in the evolution of asteroid rotation states and binary asteroid systems. The techniques that are applied to this problem fall into two main categories. The first is the use of geometric mechanics to obtain a description of the reduced phase space, which opens the door to a number of powerful techniques such as the energy-momentum method for determining the stability of equilibria and the use of variational integrators for greater accuracy in simulation. Secondly, techniques from computational dynamical systems are used to determine phase space structures important for transport phenomena and dynamical evolution.

References (136)

  1. Alber, M. S., G. G. Luther, J. E. Marsden, and J. M. Robbins [1998], Geometric phases, reduction and Lie-Poisson structure for the resonant three-wave interaction, Physica D 123, 271-290.
  2. Asphaug, E., and W. Benz [1996], Icarus 121 225-248.
  3. Beck, J.A. and C. D. Hall [1998], Relative equilibria of a rigid satellite in a circular keplerian orbit, J. Astronautical Sciences, 46, 215-247.
  4. Beigie, D., A. Leonard, and S. Wiggins [1991], A global study of enhanced stretching and diffusion in chaotic tangles. Phys. Fluids A 3(5), 1039-1049.
  5. Belton, M.J.S., Mueller, B.E.A., D'Amario, L.A., Byrnes, D.V., Klaasen, K.P., Synnott, S., Bren- eman, H., Johnson, T.V., Thomas, P.C., Veverka, J., Harch, A.P., Davies, M.E., Merline, W.J., Chapman, C.R., Davis, D., Denk, T., Neukum, G., Petit, J.-M., Greenberg, R., Storrs, A., Zellner, B. [1996], The discovery and orbit of 1993 (243)1 Dactyl. Icarus 120, 185-199.
  6. Benner, L.A.M., S.J. Ostro, J.D. Giorgini, R.F. Jurgens, J.L. Margot and M.C. Nolan [2001]. 1999 KW4. IAU Circular 7730.
  7. Bloch, A.M. [2000], Asymptotic Hamiltonian Dynamics: the Toda lattice, the three-wave interaction and the nonholonomic Chaplygin sleigh. Physica D, 141, 297-315.
  8. Bloch, A.M. [2003] Nonhonomomic Mechanics and Control, Applied Mathematical Sciences Series, Springer-Verlag.
  9. Bloch, A. M., D. Chang, N. Leonard and J. E. Marsden [2001], Controlled Lagrangians and the stabilization of mechanical systems II: Potential shaping, Trans IEEE on Auto. Control , 46, 1556-1571.
  10. Bloch, A.M. and P.E. Crouch [1998] Optimal control, optimization and analytical mechanics, in Mathematical Control Theory (J. Baillieul and J. Willems eds.), Springer, 268-321.
  11. Bloch, A. M., P. Crouch, J. E. Marsden, and T. S. Ratiu [2002], The symmetric representation of the rigid body equations and their discretization, Nonlinearity 15, 1309-1341.
  12. Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1994], Dissipation induced instabilities, Ann. Inst. H. Poincaré, Analyse Nonlineéaire 11, 37-90.
  13. Bloch, A. M., P. S. Krishnaprasad, J. E. Marsden, and T. S. Ratiu [1996], The Euler-Poincaré equations and double bracket dissipation, Comm. Math. Phys. 175, 1-42.
  14. Bloch, A. M., N. Leonard and J. E. Marsden [2001], Controlled Lagrangians and the stabilization of Euler-Poincaré mechanical systems, Int. J. of Robust and Nonlinear Control , 11, 191-214.
  15. Bottke W. F. Jr., and Melosh H. J. [1996], The formation of binary asteroids and doublet craters. Icarus 124, 372-391.
  16. Bottke W. F. Jr., Richardson D. C., Michel P., and Love S. G. [1999], 1620 Geographos and 433 Eros: Shaped by planetary tides? Astron. J. 117, 1921-1928.
  17. Bottke, W.F., R. Jedicke, A. Morbidelli, J.M. Petit, and B. Gladman [2000], Understanding the distribution of near-Earth asteroids. Science 288, 2190-2194.
  18. Bottke, W. F., Vokrouhlický, D., M. Broz, D. Nesvorný, and A. Morbidelli [2001], Science 294 1693-1696
  19. Cendra, H., J. E. Marsden, and T. S. Ratiu [2001], Lagrangian reduction by stages, volume 152 of Memoirs. American Mathematical Society, Providence, R.I.
  20. Chandrasekhar, S. [1969] Ellipsoidal Figures of Equilibrium, Yale University Press.
  21. Chang, D., A. M. Bloch, N. Leonard, J. E. Marsden, and C. Woolsey [2002], The equivalence of con- trolled Lagrangian and controlled Hamiltonian systems. Control and the Calculus of Variations (special issue dedicated to J.L. Lions) 8, 393-422.
  22. Chauvineau B. and Mignard F. [1990] Dynamics of Binary Asteroids. I. Hill's Case. Icarus 83, 360-381.
  23. Chauvineau B., Mignard F., and Farinella P. [1991] The lifetime of binary asteroids vs. gravitational encounters and collisions. Icarus 94, 299-310.
  24. Chauvineau B., Farinella P., and Mignard F. [1993], Planar orbits about a triaxial body: Applica- tions to asteroidal satellites. Icarus 105, 370-384.
  25. Cho, S., N. H. McClamroch, and M. Reyhanoglu, Dynamics of multi-body vehicles and their formu- lation as nonlinear control systems, Proceedings of 2000 American Control Conference, 3908-3912.
  26. Cho, S. and N. H. McClamroch [2002], Feedback control of triaxial attitude control testbed actuated by two proof mass devices, Proceedings of 41st CDC, 498-503.
  27. Cho, S., J. Shen and N. H. McClamroch [2003], Mathematical models for the triaxial attitude control testbed, Mathematical and Computer Modeling of Dynamical Systems (to appear).
  28. Clerc, M. and J. E. Marsden [2001], Dissipation-induced instabilities in an optical cavity laser: A mechanical analog near the 1:1 resonance, Physical Rev. E 64, 067603.
  29. Conley, C. [1968], Low energy transit orbits in the restricted three-body problem. SIAM J. Appl. Math. 16, 732-746.
  30. Coulliette, C. and S. Wiggins [2001], Intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics. Nonlinear Processes in Geophysics 8(1/2), 69-94.
  31. Dellnitz, M. and O. Junge [2002], Set oriented numerical methods for dynamical systems. In Hand- book of dynamical systems, Vol. 2, number 1 900 656, pages 221-264. North-Holland, Amsterdam.
  32. Dellnitz, M., O. Junge, W.-S. Koon, F. Lekien, M.W. Lo, J.E. Marsden, K. Padberg, R. Preis, S. Ross, and B. Thiere [2003], Transport in dynamical astronomy and multibody problems, preprint.
  33. Dobrovolskis, A.R. and J.A. Burns [1980], Life near the Roche limit: Behavior of ejecta from satellites close to planets. Icarus 42, 422-441.
  34. Doressoundiram A., Paolicchi P., Verlicchi A., and Cellino A. [1997], The formation of binary asteroids as outcomes of catastrophic collisions. Planet. Space. Sci. 45, 757-770.
  35. Duboshin, G.N. [1958] Astron. Zh. 35(2) 265.
  36. Durda, D. D. [1996], The formation of asteroidal satellites in catastrophic collisions. Icarus 120, 212-219.
  37. Duncan, M., T. Quinn, and S. Tremaine [1989], The long-term evolution of orbits in the solar system -A mapping approach. Icarus 82, 402-418.
  38. Goldreich, P., Y. Lithwick and R. Sari [2002], Formation of Kuiper-belt binaries by dynamical friction and three-body encounters. Nature 240, 643-646.
  39. Gómez, G., W.S. Koon, M.W. Lo, J.E. Marsden, J. Masdemont, and S.D. Ross [2001], Invariant manifolds, the spatial three-body problem and space mission design. Advances in the Astronau- tical Sciences 109(1), 3-22, AAS 01-301.
  40. Goździewski, K. and A. J. Maciejewski [1999], Unrestricted planar prolbme of a symmetric body and a point mass. Triangular libration points and their stability, Celest. Mech. and Dyn. Astron. 75, 251-285.
  41. Greenberg, R., Hoppa, G.V., Geissler, P., Sarid, A., and Tufts, B.R. [2002], The rotation of Europa. Celestial Mechanics and Dynamical Astronomy 83, 35-47.
  42. Hagerty, P., A.M. Bloch and M. Weinstein [2003] Radiation Induced Instability, to appear.
  43. Haller, G., and G. Yuan [2000], Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352-370.
  44. Haller, G. [2001], Distinguished material surfaces and coherent structures in 3D fluid flows. Physica D 149, 248-277.
  45. Harris, A.W. [1994], Tumbling asteroids. Icarus 107, 209-211.
  46. Harris, A.W. [2002], On the slow rotation of asteroids. Icarus 156 184-190.
  47. Hernandez, A. and J. E. Marsden [2002], Bifurcation of singular relative equilibria by the blowing up method, submitted for publication.
  48. Jaffé, C., D. Farrelly, and T. Uzer [2000], Transition state theory without time-reversal symmetry: chaotic ionization of the hydrogen atom. Phys. Rev. Lett. 84(4), 610-613.
  49. Jaffé, C., S. D. Ross, M. W. Lo, J. E. Marsden, D. Farrelly, and T. Uzer [2002], Statistical Theory of Asteroid Escape Rates, Phys. Rev. Lett. 89, 011101-1.
  50. Jalnapurkar, S. M., M. Leok, J. E. Marsden, and M. West [2003], Discrete Routh reduction, Found. Comput. Math. (to appear).
  51. Kane, C., J.E. Marsden, M. Ortiz, M. West [2000], Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Num. Meth. Eng. 49, 1295-1325.
  52. Koon, W.S., M.W. Lo, J.E. Marsden, and S.D. Ross [2000], Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics. Chaos 10(2), 427-469.
  53. Koon, W.S., M.W. Lo, J.E. Marsden, and S.D. Ross [2001], Resonance and capture of Jupiter comets. Celest. Mech. Dyn. Astron. 81(1-2), 27-38.
  54. Koon, W.S., M.W. Lo, J.E. Marsden, and S.D. Ross [2001a], Low energy transfer to the Moon, Celest. Mech. Dyn. Astron. 81(1-2), 63-73.
  55. Koon, W.S., M.W. Lo, J.E. Marsden and S.D. Ross [2002], Constructing a low energy transfer between Jovian moons. Contemp. Math. 292, 129-145.
  56. Krishnaprasad, P. S. and J. E. Marsden [1987], Hamiltonian structure and stability for rigid bodies with flexible attachments, Arch. Rational Mech. Anal. 98, 137-158.
  57. Krupa, M., M. Schagerl, A. Steindl, P. Szmolyan, and H. Troger [2001], Relative equilibria of tethered satellite systems and their stability for very stiff tethers, Dyn. Syst. 16, 253-278.
  58. Lara, M. and Scheeres, D.J. [2003], Stability bounds for three-dimensional motion close to asteroids. Journal of the Astronautical Sciences, in press.
  59. Lekien, F. and C. Coulliette [2002], mangen: Computation of hyperbolic trajectories, invariant manifolds and lobes of dynamical systems defined as 2D+1 data sets, in preparation.
  60. Lekien, F. and J.E. Marsden [2002], Separatrices in high-dimensional phase spaces: application to Van Der Waals dissociation, in preparation.
  61. Lekien, F., C. Coulliette and J.E. Marsden [2003], Lagrangian structures in high-frequency radar data and optimal pollution timing. Proceedings of the 7th Experimental Chaos Conference, Ameri. Inst. Phys., to appear.
  62. Lekien, F. [2003], Time-Dependent Dynamical Systems and Geophysical Flows. Ph.D. thesis, Cal- ifornia Institute of Technology.
  63. Leonard, N. E. and J. E. Marsden [1997], Stability and drift of underwater vehicle dynamics: mechanical systems with rigid motion symmetry, Physica D 105, 130-162.
  64. Lew, A., J. E. Marsden, M. Ortiz, and M. West [2003], Variational time integration for mechanical systems, Intern. J. Num. Meth. in Engin. (to appear).
  65. Lew, A., J. E. Marsden, M. Ortiz, and M. West [2003a], Asynchronous variational integrators, Archive for Rat. Mech. An (to appear).
  66. Littlejohn, R. G. and K. A. Mitchell [2002], Gauge theory of small vibrations in polyatomic molecules. In Geometry, mechanics, and dynamics, number 1 919 837, pages 407-428. Springer, New York.
  67. Maciejewski, A. J. [1995], Reduction, relative equilibria and potential in the two rigid bodies prob- lem, Celest. Mech. and Dyn. Astron. 63, 1-28.
  68. Maciejewski, A. J. [1999], The two rigid bodies problem. Reduction and relative equilibria. In Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), volume 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pages 475-479. Kluwer Acad. Publ., Dordrecht.
  69. Malhotra, N. and S. Wiggins [1998], Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time dependence, with applications to Rossby wave flow. J. of Nonlinear Science 8, 401-456.
  70. Malhotra, R. [1996], The phase space structure near Neptune resonances in the Kuiper belt. Astron. J. 111(1), 504-516.
  71. Malhotra, R., M. Duncan, and H. Levison [2000], Dynamics of the Kuiper belt. In Protostars and Planets IV (eds. Mannings, V., Boss, A. P., and Russell, S. S.), Univ. of Arizona Press, Tucson, 1231-1254.
  72. Margot, J. L., Nolan, M. C., Benner, L. A. M., Ostro, S. J., Jurgens, R. F., Giorgini, J. D., Slade, M. A., & Campbell, D. B. [2002] Science 296 1445-1448.
  73. Marsden, J. E. [1992], Lectures on Mechanics, volume 174 of London Math. Soc. Lecture Note Ser. 174. Cambridge University Press.
  74. Marsden, J., G. Misiolek, M. Perlmutter, and T. Ratiu [1998], Symplectic reduction for semidirect products and central extensions, Diff. Geom. and its Appl. 9, 173-212.
  75. Marsden, J. E., R. Montgomery, and T. S. Ratiu [1990], Reduction, symmetry and phases in me- chanics, volume 436 of Memoirs of the AMS, vol 436. Amer. Math. Soc., Providence, RI.
  76. Marsden, J. E., G. W. Patrick, and S. Shkoller [1998], Multisymplectic geometry, variational inte- grators and nonlinear PDEs, Comm. Math. Phys. 199, 351-395.
  77. Marsden, J. E., S. Pekarsky, and S. Shkoller [2000], Symmetry reduction of discrete Lagrangian mechanics on Lie groups, J. Geom. and Phys. 36, 140-151.
  78. Marsden, J. E., S. Pekarsky, S. Shkoller, and M. West [2001], Variational methods, multisymplectic geometry and continuum mechanics, J. Geometry and Physics 38, 253-284.
  79. Marsden, J. E. and T. S. Ratiu [1999], Introduction to Mechanics and Symmetry, volume 17 of Texts in Applied Mathematics, vol. 17; 1994, Second Edition, 1999. Springer-Verlag.
  80. Marsden, J. E., T. S. Ratiu, and J. Scheurle [2000], Reduction theory and the Lagrange-Routh equations, J. Math. Phys. 41, 3379-3429.
  81. Marsden, J. E. and S. Shkoller [2001], Global well-posedness of the LANS-α equations, Proc. Roy. Soc. London 359, 1449-1468.
  82. Marsden, J.E. and M. West [2001], Discrete mechanics and variational integrators, Acta Numerica (2001) 357-514.
  83. Meiss, J.D. [1992], Symplectic maps, variational principles, and transport. Rev. Mod. Phys. 64(3), 795-848.
  84. Merline, W. J., S. J. Weidenschilling, D. D. Durda, J. L. Margot, P. Pravec, and A. D. Storrs [2002], Asteroids Do Have Satellites, in Asteroids III, W.M. Bottke et al. eds, 289-312.
  85. Michel, P., W. Benz, P. Tanga, D.C. Richardson [2001], Collisions and gravitational reaccumulation: Forming asteroid families and satellites. Science 294 1696-1700.
  86. Murray, C.D. and S.F. Dermott [1999], Solar System Dynamics, Cambridge.
  87. Neishtadt, A.I., D.J. Scheeres , V.V. Sidorenko, and A.A. Vasiliev [2002], Evolution of comet nucleus rotation, Icarus 157, 205-218.
  88. Néron de Surgy, O. and Laskar, J. [1997], On the long term evolution of the spin of the Earth. Astronomy and Astrophysics 318, 975-989.
  89. Poje, A. C., and G. Haller [1999], Geometry of cross-stream mixing in a double-gyre ocean model. Phys. Oceanogr. 29, 1649-1665.
  90. Richardson, D. C., Bottke W. F. Jr., and Love S. G. [1998], Tidal distortion and disruption of Earth-crossing asteroids. Icarus 134, 47-76.
  91. Rom-Kedar, V., A. Leonard, and S. Wiggins [1990], An analytical study of transport, mixing and chaos in an unsteady vortical flow. J. Fluid Mech. 214, 347-394.
  92. Rom-Kedar, V. and S. Wiggins [1990], Transport in two-dimensional maps. Arch. Rat. Mech. Anal. 109, 239-298.
  93. Rom-Kedar, V. and S. Wiggins [1991], Transport in two-dimensional maps: Concepts, examples, and a comparison of the theory of Rom-Kedar and Wiggins with the Markov model of MacKay, Meiss, Ott, and Percival. Physica D 51, 248-266.
  94. Rom-Kedar, V. [1999], Transport in a class of n-d.o.f. systems. In Hamiltonian systems with three or more degrees of freedom (S'Agaró, 1995), Vol. 533 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Kluwer Acad. Publ., Dordrecht, 538-543.
  95. Ross, S.D. [2002], Statistical theory of interior-exterior transition and collision probabilities for minor bodies in the solar system. Proceedings of the International Conference on Libration Point Orbits and Applications, Parador d'Aiguablava, Spain, June 10-14, 2002, to appear.
  96. Ross, S.D., W.S. Koon, M.W. Lo, and J.E. Marsden [2003], Design of a Multi-Moon Orbiter, 13th AAS/AIAA Space Flight Mechanics Meeting, Ponce, Puerto Rico, Paper AAS 03-143.
  97. Rowley, C. W. and J. E. Marsden [2002], Variational integrators for point vortices, Proc. CDC 40, 1521-1527.
  98. Rubincam D. [2000], Radiative Spin-up and Spin-down of Small Asteroids. Icarus 148, 2-11.
  99. Rui, C., I. Kolmanovsky, and N. H. McClamroch [2000], Nonlinear attitude and shape control of spacecraft with articulated appendages and reaction wheels, IEEE Transactions on Automatic Control, 45, 1455-1469.
  100. Saha, P., and S. Tremaine [1992], Symplectic integrators for solar system dynamics. Astron. J. 104(4), 1633-1640.
  101. Sawai, S., D.J. Scheeres, and S. Broschart [2002], Control of Hovering Spacecraft using Altimetry, Journal of Guidance, Control, and Dynamics 25(4): 786-795.
  102. Scheeres D.J. [1994], Dynamics About Uniformly Rotating Tri-Axial Ellipsoids. Applications to Asteroids. Icarus 110, 225-238.
  103. Scheeres D. J., Ostro S. J., Hudson R. S., and Werner R. A. [1996], Orbits close to asteroid 4769 Castalia. Icarus 121, 67-87.
  104. Scheeres D.J., Ostro S.J. Hudson R.S., DeJong E.M. Suzuki S. [1998], Dynamics of orbits close to asteroid 4179 Toutatis. Icarus 132, 53-79.
  105. Scheeres D.J. [1999] The Effect of C 22 on Orbit Energy and Angular Momentum. Celestial Mechan- ics and Dynamical Astronomy 73, 339-348.
  106. Scheeres, D.J. [1999a], The Effect of C22 on Orbit Energy and Angular Momentum. Celest. Mech. Dyn. Astr. 73, 339-348.
  107. Scheeres, D.J., Williams B.G., and Miller J.K. [2000], Evaluation of the dynamic environment of an asteroid: Applications to 433 Eros. Journal of Guidance, Control and Dynamics 23, 466-475.
  108. Scheeres D.J., Ostro S.J., Werner R.A., Asphaug E., Hudson R.S. [2000], Effects of gravitational interactions on asteroid spin states. Icarus 147, 106-118.
  109. Scheeres D.J. and Marzari F. [2000], Temporary orbital capture of ejecta from comets and asteroids. Astronomy and Astrophysics 356, 747-756.
  110. Scheeres, D.J. [2001], Changes in rotational angular momentum due to gravitational interactions between two finite bodies. Celest. Mech. Dyn. Astr. 81, 39-44.
  111. Scheeres D.J. [2002] Stability in the full two-body problem. Celestial Mechanics and Dynamical Astronomy 83, 155-169.
  112. Scheeres, D.J. [2002a], Stability of Binary Asteroids, Icarus 159, 271-283.
  113. Scheeres, D.J. [2003], Stability of relative equilibria in the full two-body problem, this collection.
  114. Scheeres, D.J., D.D. Durda and P.E. Geissler [2003], The fate of asteroid ejecta, in Asteroids III, University of Arizona, Tuscon, in press.
  115. Schlick, T. [2002], Molecular modeling and simulation, volume 21 of Interdisciplinary Applied Math- ematics. Springer-Verlag, New York. An interdisciplinary guide.
  116. Serban, R., W.S. Koon, M.W. Lo, J.E. Marsden, L.R. Petzold, S.D. Ross and R.S. Wilson [2002], Halo orbit mission correction maneuvers using optimal control, Automatica 38(4), 571-583.
  117. Shen, J. and N. H. McClamroch [2001] Translational and rotational spacecraft manuevers via shape change actuators, Proceedings of 2001 American Control Conference, 3961-3966.
  118. Shen, J. and N. H. McClamroch [2002], Translational and rotational maneuvers of an underactuated space robot using proof mass actuators, International Journal of Robotics Research, 21, 607-618.
  119. Shen, J. N.H. McClamroch and A.M. Bloch [2002] Local controllability of the triaxial control test bed, Proc. 2002 CDC.
  120. Shen, J. N.H. McClamroch and A.M. Bloch [2003] Local equilibrium controllability of multibody systems controlled via shape change, The IEEE Transactions on Automatic Control (to appear).
  121. Shen, J., A. K. Sanyal, and N. H. McClamroch [2003], Asymptotic stability of multibody attitude systems, (preprint).
  122. Simo, J. C., D. R. Lewis, and J. E. Marsden [1991], Stability of relative equilibria I: The reduced energy momentum method, Arch. Rational Mech. Anal. 115, 15-59.
  123. Spitale, J. and Greenberg, R. [2001], Numerical evaluation of the general Yarkovsky effect: Effects on semimajor axis. Icarus 149, 222-234.
  124. Stern, S.A., Bottke, W.F., and Levison, H.F. [2003], Regarding the putative eccentricity of Charon's orbit, Astron. J. 125 902-905.
  125. Tiyapan, A. and C. Jaffé [1995], Chaotic scattering: An invariant fractal tiling of phase space. J. Chem. Phys. 103(13), 5499-5511.
  126. Touma, J. and Wisdom, J. [1994], Evolution of the Earth-Moon system. The Astronomical Journal 108(5), 1943-1961.
  127. Veillet, C., Parker, J.W., Griffin, I., Marsden, B., Doressoundiram, A., Buie, M., Tholen, D.J., Connelley, M., Holman, M.J. [2002], Nature 416, 711.
  128. Wang, L. S., P. S. Krishnaprasad, and J. H. Maddocks [1991], Hamiltonian dynamics of a rigid body in a central gravitational field, Cel. Mech. Dyn. Astr. 50, 349-386.
  129. Wang, L. S., P. S. Krishnaprasad, and J. H. Maddocks [1992], Steady rigid-body motions in a central gravity field, J. Astronautical Sciences, 40, 449-478.
  130. Wang, L. S., K.-Y. Lian, and P.-T. Chen [1995], Steady motions of gyrostat satellites and their stability, IEEE Trans. Automatic Control, 40, 1732-1743.
  131. Washabaugh, P.D. and D.J. Scheeres [2002], Energy and stress distributions in ellipsoids, Icarus 159(2), 314-321.
  132. Wiggins, S. [1992], Chaotic transport in dynamical systems. Interdisciplinary Appl. Math. 2. Springer, Berlin-Heidelberg-New York.
  133. Wisdom, J. [1987] Rotational dynamics of irregularly shaped natural satellites. Astron. J. 94, 1350-1360.
  134. Wisdom, J., and M. Holman [1991], Symplectic maps for the n-body problem. Astron. J. 102, 1528-1538.
  135. Yeomans, D.K., and P.W. Chodas [1989], An asymmetric outgassing model for cometary nongrav- itational accelerations. Astron. J. 98(3), 1083-1093.
  136. Zenkov, D. V., A. M. Bloch, and J. E. Marsden [2002], The Lyapunov-Malkin theorem and stabi- lization of the unicycle with rider, Systems and Control Lett. 46, 293-300.