Papers by Alexander von Lühmann
Advances in Wearable High Density fNIRS and Utility for BCI
Observability of Visual Working Memory Brain Circuitry With Functional Near-Infrared Spectroscopy
Journal of Vision

bioRxiv (Cold Spring Harbor Laboratory), May 16, 2024
Significance: Accurate sensor placement is vital for non-invasive brain imaging, particularly for... more Significance: Accurate sensor placement is vital for non-invasive brain imaging, particularly for functional near infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT), which lack standardized layouts like EEG. Custom, manually prepared probe layouts on textile caps are often imprecise and labor-intensive. We introduce a method for creating personalized, 3D-printed headgear, enabling accurate translation of 3D brain coordinates to 2D printable panels for custom fNIRS and EEG sensor layouts, reducing costs and manual labor. Approach: Our approach uses atlas-based or subject-specific head models and a spring-relaxation algorithm for flattening 3D coordinates onto 2D panels, using 10-5 EEG coordinates for reference. This process ensures geometrical fidelity, crucial for accurate probe placement. Probe geometries and holder types are customizable and printed directly on the cap, making the approach agnostic to instrument manufacturers and probe types. Results: Our ninjaCap method offers 2.2±1.5 mm probe placement accuracy. Over the last five years, we have developed and validated this approach with over 50 cap models and 500 participants. A cloud-based ninjaCap generation pipeline along with detailed instructions is now available at openfnirs.org. The ninjaCap marks a significant advancement in creating individualized neuroimaging caps, reducing costs and labor while improving probe placement accuracy, thereby reducing variability in research.
NinjaNIRS 2021: Continued Progress towards Whole Head, High Density fNIRS

NeuroImage, Oct 1, 2019
In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenario... more In the analysis of functional Near-Infrared Spectroscopy (fNIRS) signals from real-world scenarios, artifact rejection is essential. However, currently there exists no gold-standard. Although a plenitude of methodological approaches implicitly assume the presence of latent processes in the signals, elaborate Blind-Source-Separation methods have rarely been applied. A reason are challenging characteristics such as Non-instantaneous and non-constant coupling, correlated noise and statistical dependencies between signal components. We present a novel suitable BSS framework that tackles these issues by incorporating A) Independent Component Analysis methods that exploit both higher order statistics and sample dependency, B) multimodality, i.e., fNIRS with accelerometer signals, and C) Canonical-Correlation Analysis with temporal embedding. This enables analysis of signal components and rejection of motion-induced physiological hemodynamic artifacts that would otherwise be hard to identify. We implement a method for Blind Source Separation and Accelerometer based Artifact Rejection and Detection (BLISSA 2 RD). It allows the analysis of a novel n-back based cognitive workload paradigm in freely moving subjects, that is also presented in this manuscript. We evaluate on the corresponding data set and simulated ground truth data, making use of metrics based on 1 st and 2 nd order statistics and SNR and compare with three established methods: PCA, Spline and Waveletbased artifact removal. Across 17 subjects, the method is shown to reduce movement induced artifacts by up to two orders of magnitude, improves the
Frontiers in Human Neuroscience, Nov 12, 2015

Neurophotonics, May 17, 2023
Recent progress in optoelectronics has made wearable and high-density functional near-infrared sp... more Recent progress in optoelectronics has made wearable and high-density functional near-infrared spectroscopy (fNIRS) and diffuse optical tomography (DOT) technologies possible for the first time. These technologies have the potential to open new fields of real-world neuroscience by enabling functional neuroimaging of the human cortex at a resolution comparable to fMRI in almost any environment and population. In this perspective article, we provide a brief overview of the history and the current status of wearable high-density fNIRS and DOT approaches, discuss the greatest ongoing challenges, and provide our thoughts on the future of this remarkable technology. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.

IEEE Transactions on Biomedical Engineering, Jun 1, 2017
For the further development of the fields of telemedicine, neurotechnology, and braincomputer int... more For the further development of the fields of telemedicine, neurotechnology, and braincomputer interfaces, advances in hybrid multimodal signal acquisition and processing technology are invaluable. Currently, there are no commonly available hybrid devices combining bioelectrical and biooptical neurophysiological measurements [here electroencephalography (EEG) and functional near-infrared spectroscopy (NIRS)]. Our objective was to design such an instrument in a miniaturized, customizable, and wireless form. Methods: We present here the design and evaluation of a mobile, modular, multimodal biosignal acquisition architecture (M3BA) based on a high-performance analog front-end optimized for biopotential acquisition, a microcontroller, and our open-NIRS technology. Results: The designed M3BA modules are very small configurable high-precision and low-noise modules (EEG input referred noise @ 500 SPS 1.39 µV p p , NIRS noise equivalent power NEP 750 nm = 5.92 pW p p , and NEP 850 nm = 4.77 pW p p) with full input linearity, Bluetooth, 3-D accelerometer, and low power consumption. They support flexible user-specified biopotential reference setups and wireless body area/sensor network scenarios. Conclusion: Performance characterization and in-vivo experiments confirmed functionality and quality of the designed architecture. Significance: Telemedicine and assistive neurotechnology scenarios will increasingly include wearable multimodal sensors in the future. The M3BA architecture can significantly facilitate future designs for research in these and other fields that rely on customized mobile hybrid biosignal acquisition hardware.

Open Access Dataset for EEG+NIRS Single-Trial Classification
IEEE Transactions on Neural Systems and Rehabilitation Engineering, Oct 1, 2017
We provide an open access dataset for hybrid brain-computer interfaces (BCIs) using electroenceph... more We provide an open access dataset for hybrid brain-computer interfaces (BCIs) using electroencephalography (EEG) and near-infrared spectroscopy (NIRS). For this, we con-ducted two BCI experiments (left vs. right hand motor imagery; mental arithmetic vs. resting state). The dataset was validated using baseline signal analysis methods, with which classification performance was evaluated for each modality and a combination of both modalities. As already shown in previous literature, the capability of discriminating different mental states can be en-hanced by using a hybrid approach, when comparing to single modality analyses. This makes the provided data highly suitable for hybrid BCI investigations. Since our open access dataset also comprises motion artifacts and physiological data, we expect that it can be used in a wide range of future validation approaches in multimodal BCI research.
NinjaNIRS: An Open-Source Ecosystem for Wearable, Whole-Head and High Density fNIRS with EEG Co-Localization
NinjaNIRS seeks to provide an open-source ecosystem to increase adoption of functional near-infra... more NinjaNIRS seeks to provide an open-source ecosystem to increase adoption of functional near-infrared spectroscopy (fNIRS) with integrated EEG in the real world. Co-location and high module count enables high-density, whole-head coverage of both modalities.
Closed Loop Feedback fNIRS Brain Computer Interface for Increasing Classification Accuracy in a Left Versus Right Hand Movement Task

Neurophotonics, Dec 9, 2022
Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique w... more Significance: Functional near-infrared spectroscopy (fNIRS) is a popular neuroimaging technique with proliferating hardware platforms, analysis approaches, and software tools. There has not been a standardized file format for storing fNIRS data, which has hindered the sharing of data as well as the adoption and development of software tools. Aim: We endeavored to design a file format to facilitate the analysis and sharing of fNIRS data that is flexible enough to meet the community's needs and sufficiently defined to be implemented consistently across various hardware and software platforms. Approach: The shared NIRS format (SNIRF) specification was developed in consultation with the academic and commercial fNIRS community and the Society for functional Near Infrared Spectroscopy. Results: The SNIRF specification defines a format for fNIRS data acquired using continuous wave, frequency domain, time domain, and diffuse correlation spectroscopy devices. Conclusions: We present the SNIRF along with validation software and example datasets. Support for reading and writing SNIRF data has been implemented by major hardware and software platforms, and the format has found widespread use in the fNIRS community.

Open access repository for hybrid EEG-NIRS data
Recently, in order to overcome the disadvantages of unimodal brain-imaging modalities such as low... more Recently, in order to overcome the disadvantages of unimodal brain-imaging modalities such as low signal-to-noise ratio and vulnerability to motion artifact and to improve system performance, a multimodal imaging system (so-called hybrid system) has been emerging as an attractive alternative. In the present study, to meet the increasing demand on a hybrid brain-imaging data, we introduce open access datasets of electroencephalography (EEG) and near-infrared spectroscopy (NIRS) simultaneously measured during various cognitive tasks. The datasets contain BCI data such as motor imagery (MI)-, and mental arithmetic (MA), and word generation (WG)-related brain signals, and cognitive task data such as n-back (NB)-, and discrimination/selection response (DSR)-related brain signals. We provide the reference results of these datasets, which were validated using analysis pipelines widely used in related research fields. In particular, it was confirmed from classification analysis that a hybrid EEG-NIRS system can yield better classification accuracy than each of unimodal brain-imaging systems.

Frontiers in Human Neuroscience, Feb 18, 2020
Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals h... more Within a decade, single trial analysis of functional Near Infrared Spectroscopy (fNIRS) signals has gained significant momentum, and fNIRS joined the set of modalities frequently used for active and passive Brain Computer Interfaces (BCI). A great variety of methods for feature extraction and classification have been explored using state-of-the-art Machine Learning methods. In contrast, signal preprocessing and cleaning pipelines for fNIRS often follow simple recipes and so far rarely incorporate the available state-of-the-art in adjacent fields. In neuroscience, where fMRI and fNIRS are established neuroimaging tools, evoked hemodynamic brain activity is typically estimated across multiple trials using a General Linear Model (GLM). With the help of the GLM, subject, channel, and task specific evoked hemodynamic responses are estimated, and the evoked brain activity is more robustly separated from systemic physiological interference using independent measures of nuisance regressors, such as short-separation fNIRS measurements. When correctly applied in single trial analysis, e.g., in BCI, this approach can significantly enhance contrast to noise ratio of the brain signal, improve feature separability and ultimately lead to better classification accuracy. In this manuscript, we provide a brief introduction into the GLM and show how to incorporate it into a typical BCI preprocessing pipeline and cross-validation. Using a resting state fNIRS data set augmented with synthetic hemodynamic responses that provide ground truth brain activity, we compare the quality of commonly used fNIRS features for BCI that are extracted from (1) conventionally preprocessed signals, and (2) signals preprocessed with the GLM and physiological nuisance regressors. We show that the GLM-based approach can provide better single trial estimates of brain activity as well as a new feature type, i.e., the weight of the individual and channel-specific hemodynamic response function (HRF) regressor. The improved estimates yield features with higher separability, that significantly enhance accuracy in a binary classification task when compared to conventional preprocessing-on average +7.4% across subjects and feature types. We propose to adapt this well-established approach from neuroscience to the domain of single-trial analysis and preprocessing wherever the classification of evoked brain activity is of concern, for instance in BCI.

Neurophotonics, May 23, 2023
Short-separation (SS) regression and diffuse optical tomography (DOT) image reconstruction, two w... more Short-separation (SS) regression and diffuse optical tomography (DOT) image reconstruction, two widely adopted methods in functional near-infrared spectroscopy (fNIRS), were demonstrated to individually facilitate the separation of brain activation and physiological signals, with further improvement using both sequentially. We hypothesized that doing both simultaneously would further improve the performance. Aim: Motivated by the success of these two approaches, we propose a method, SS-DOT, which applies SS and DOT simultaneously. Approach: The method, which employs spatial and temporal basis functions to represent the hemoglobin concentration changes, enables us to incorporate SS regressors into the time series DOT model. To benchmark the performance of the SS-DOT model against conventional sequential models, we use fNIRS resting state data augmented with synthetic brain response as well as data acquired during a ball squeezing task. The conventional sequential models comprise performing SS regression and DOT. Results: The results show that the SS-DOT model improves the image quality by increasing the contrast-to-background ratio by a threefold improvement. The benefits are marginal at small brain activation. Conclusions: The SS-DOT model improves the fNIRS image reconstruction quality.

Neurophotonics, Jan 7, 2021
The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been ex... more The application of functional near-infrared spectroscopy (fNIRS) in the neurosciences has been expanding over the last 40 years. Today, it is addressing a wide range of applications within different populations and utilizes a great variety of experimental paradigms. With the rapid growth and the diversification of research methods, some inconsistencies are appearing in the way in which methods are presented, which can make the interpretation and replication of studies unnecessarily challenging. The Society for Functional Near-Infrared Spectroscopy has thus been motivated to organize a representative (but not exhaustive) group of leaders in the field to build a consensus on the best practices for describing the methods utilized in fNIRS studies. Our paper has been designed to provide guidelines to help enhance the reliability, repeatability, and traceability of reported fNIRS studies and encourage best practices throughout the community. A checklist is provided to guide authors in the preparation of their manuscripts and to assist reviewers when evaluating fNIRS papers. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
Frontiers in Neuroscience, Sep 29, 2020
Neurophotonics, Feb 8, 2021
NeuroImage, Mar 1, 2020
OpenBU http://open.bu.edu Biomedical Engineering BU Open Access Articles 2020-03 Improved physiol... more OpenBU http://open.bu.edu Biomedical Engineering BU Open Access Articles 2020-03 Improved physiological noise regression in fNIRS: a multimodal extension of the General Lin...

Scientific Data, Feb 13, 2018
We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography... more We provide an open access multimodal brain-imaging dataset of simultaneous electroencephalography (EEG) and near-infrared spectroscopy (NIRS) recordings. Twenty-six healthy participants performed three cognitive tasks: 1) n-back (0-, 2and 3-back), 2) discrimination/selection response task (DSR) and 3) word generation (WG) tasks. The data provided includes: 1) measured data, 2) demographic data, and 3) basic analysis results. For n-back (dataset A) and DSR tasks (dataset B), event-related potential (ERP) analysis was performed, and spatiotemporal characteristics and classification results for 'target' versus 'non-target' (dataset A) and symbol 'O' versus symbol 'X' (dataset B) are provided. Time-frequency analysis was performed to show the EEG spectral power to differentiate the task-relevant activations. Spatiotemporal characteristics of hemodynamic responses are also shown. For the WG task (dataset C), the EEG spectral power and spatiotemporal characteristics of hemodynamic responses are analyzed, and the potential merit of hybrid EEG-NIRS BCIs was validated with respect to classification accuracy. We expect that the dataset provided will facilitate performance evaluation and comparison of many neuroimaging analysis techniques. Design Type(s) repeated measure design • stimulus or stress design Measurement Type(s) brain activity measurement Technology Type(s) near-infrared spectroscopy • electroencephalography Factor Type(s) presentation of stimulus Sample Characteristic(s) Homo sapiens • brain
Uploads
Papers by Alexander von Lühmann