Conventional air pollutant source determination using bivariate polar plot in Black Sea, Turkey
Environment, Development and Sustainability, 2021
The purpose of this study is to identify and characterize individual sources of pollutants such a... more The purpose of this study is to identify and characterize individual sources of pollutants such as PM10, SO2, NOx, and CO in the urban area in Karadeniz (Turkey) using the bivariate polar plots method. In addition, the relationship between the meteorological conditions and the pollutants was determined based on correlation analysis in the region. Bivariate polar plots are a graphical method used to demonstrate the dependence of pollutant concentrations on wind direction measured at stations. Thanks to these graphics, resource types and properties can be determined. Wind flow and pollution data were used to provide information on wind and pollutant interactions in the study area. As a result of the study, it was founded that the main source of pollutants is intensive anthropogenic activities such as urban, street traffic, agricultural activities, and natural resources. It has been concluded that the highway in the region is not an important source of pollutants. In addition, the pollutant relations were examined with meteorological data, and it was discovered that temperature and relative humidity were effective for all pollutants.
Uploads
Papers by Mustafa Zeybek
play a crucial role in the mapping process. Researchers are exploring solutions that use image-based
techniques such as structure from motion (SfM) to produce topographic maps using UAVs while
accessing locations with extremely high accuracy and minimal surface measurements. Advancements
in technology have enabled real-time kinematic (RTK) to increase positional accuracy to 1–3 times the
ground sampling distance (GSD). This paper focuses on post-processing kinematic (PPK) of positional
accuracy to achieve a GSD or better. To achieve this, precise satellite orbits, clock information, and
UAV global navigation satellite system observation files are utilized to calculate the camera positions
with the highest positional accuracy. RTK/PPK analysis is conducted to improve the positional
accuracies obtained from different flight patterns and altitudes. Data are collected at altitudes
of 80 and 120 meters, resulting in GSD values of 1.87 cm/px and 3.12 cm/px, respectively. The
evaluation of ground checkpoints using the proposed PPK methodology with one ground control
point demonstrated root mean square error values of 2.3 cm (horizontal, nadiral) and 2.4 cm (vertical,
nadiral) at an altitude of 80 m, and 1.4 cm (horizontal, oblique) and 3.2 cm (vertical, terrain-following)
at an altitude of 120 m. These results suggest that the proposed methodology can achieve high
positional accuracy for UAV image georeferencing. The main contribution of this paper is to evaluate
the PPK approach to achieve high positional accuracy with unmanned aerial vehicles and assess the
effect of different flight patterns and altitudes on the accuracy of the resulting topographic maps.
(LiDAR) teknolojisinden yararlanma olanaklarını araştırmak ve (ii)
meşcere parametrelerine ilişkin LiDAR verilerini, uygulamada tespit
edilen değerlerle karşılaştırmaktır. Bu doğrultuda, Şavşat’ta arazi ölçümleri
gerçekleştirilen örnek alanlar el tipi LiDAR cihazı ile taranmıştır.
Daha sonra örnek alanlardan elde edilen veri setleri birbiriyle
karşılaştırılarak LiDAR’ın hassasiyeti sınanmıştır. Yapılan istatistik
testler sonucunda, LiDAR ve çapölçer ile ölçülen ağaçların çapları
arasında anlamlı bir fark bulunmamıştır (p>0,05). Yersel ölçümler
referans kabul edilirse; göğüs çapı, ağaç sayısı, meşcere üst boyu ve
meşcere hacmi parametreleri LiDAR cihazıyla sırasıyla; ort. 0,68 cm
(%2,2), 14 ad/ha (%2,0), 0,8 m (%3,4) ve 155,7 m3/ha (%24,6) hata
ile tahmin edilebilmiştir. Hacimde gözlenen yüksek hata üzerine,
arazideki altı adet ağaç önce LiDAR ile dikili halde taranmış ve sonra
kesilerek, bölümleme yöntemiyle hacimlendirilmiştir. Yerde ölçülen
gövde hacimlerinin LiDAR ile ort. 0,061 m3 (%5,1) hata ile tespit edilebildiği
görülmüştür. Dolayısıyla, meşcere hacimlerindeki yüksek
hata oranlarının LiDAR yönteminden değil, envanterde kullanılan
tek girişli hacim tablolarından kaynaklandığı anlaşılmıştır. Buna
karşılık, LiDAR nokta bulutları üzerinden ağaç türü ve meşcere tipleri
belirlenememiştir. Çalışmanın sonunda, amenajman planlarındaki
birçok meşcere parametresine ait değerlerin mobil LiDAR teknolojisiyle
arazide daha az vakit harcanarak kabul edilebilir doğruluk
düzeylerinde hesaplanabildiği sonucuna ulaşılmıştır.