Manzillo et al., 2018 - Google Patents

Multibeam antenna with a passive beamforming system in LTCC technology for mm-wave systems-in-package

Manzillo et al., 2018

Document ID
17408010624275741617
Author
Manzillo F
Śmierzchalski M
Ettorre M
Aurinsalo J
Kautio K
Lahti M
Lamminen A
Säily J
Sauleau R
Publication year
Publication venue
12th European Conference on Antennas and Propagation (EuCAP 2018)

External Links

Snippet

This paper presents an innovative switched-beam antenna system at 60 GHz which is completely integrated in a low-profile, planar low temperature co-fired ceramic (LTCC) module. A broadband, wide-angle scanning performance is achieved resorting to parallel …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0018Space- fed arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised active aerial units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0006Particular feeding systems
    • H01Q21/0037Particular feeding systems linear waveguide fed arrays
    • H01Q21/0043Slotted waveguides
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q19/00Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic
    • H01Q19/06Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens
    • H01Q19/062Combinations of primary active aerial elements and units with secondary devices, e.g. with quasi-optical devices, for giving the aerial a desired directional characteristic using refracting or diffracting devices, e.g. lens for focusing
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/24Combinations of aerial elements or aerial units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • H01Q13/18Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/0087Apparatus or processes specially adapted for manufacturing antenna arrays
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/20Non-resonant leaky-waveguide or transmission-line aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q25/00Aerials or aerial systems providing at least two radiating patterns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices

Similar Documents

Publication Publication Date Title
Guo et al. Quasi-optical multi-beam antenna technologies for B5G and 6G mmWave and THz networks: A review
Ali et al. 2-D scanning magnetoelectric dipole antenna array fed by RGW butler matrix
Dadgarpour et al. One-and two-dimensional beam-switching antenna for millimeter-wave MIMO applications
Marin et al. Lens antenna with planar focal surface for wide-angle beam-steering application
Chu et al. 60-GHz LTCC wideband vertical off-center dipole antenna and arrays
Ettorre et al. Single-folded leaky-wave antennas for automotive radars at 77 GHz
Karttunen et al. Using optimized eccentricity rexolite lens for electrical beam steering with integrated aperture coupled patch array
Pourahmadazar et al. V-band dipole phased array antennas on extended hemispherical dielectric lenses
US12327925B2 (en) Phased circular array of planar omnidirectional radiating elements
Singh et al. A comprehensive survey on millimeter wave antennas at 30/60/120 GHz: design, challenges and applications
Tekkouk et al. Folded Rotman lens multibeam antenna in SIW technology at 24 GHz
Lin et al. Wide-angle and wideband millimeter-wave beam-scanning array using multimode shorted patch antenna elements for unmanned aerial vehicle communication
Wang et al. 28 GHz multi-beam antenna array based on A compact wideband 8× 8 butler matrix
Pourahmadazar et al. Planar microwave lens based beam-forming phased antenna array system using non-coplanar SIW fed bowtie antenna
Bansal et al. Two-dimensional beam-steering lens antenna with fast inter-beam handover for PNT and data services for satellite communications on the move
Shaw et al. Omnidirectional conformal microstrip array antenna with electronically beam switching capabilities for 5G applications
Jokanovic et al. Advanced antennas for next generation wireless access
Di Paola et al. A novel lens antenna design based on a bed of nails metasurface for new generation mobile devices
Manzillo et al. Multibeam antenna with a passive beamforming system in LTCC technology for mm-wave systems-in-package
Tekkouk et al. Compact multibeam Rotman lens antenna in SIW technology
Ettorre et al. Multi-beam pillbox antennas in the millimeter-wave range
Tiwari et al. Millimeter-wave wide-angle beamsteerable transmission-type metasurface lens antenna
Ahmad A linear array design based on non-uniform Chebyshev distribution for high gain low sidelobe level millimetre wave 5G applications
Umar et al. Possibilities and challenges for a phased array antenna system in ISAC: A hardware perspective
Manzillo et al. An LTCC beam-switching antenna with high beam overlap for 60-GHz mobile access points