TWI462116B - 3d memory array with improved ssl and bl contact layout - Google Patents

3d memory array with improved ssl and bl contact layout Download PDF

Info

Publication number
TWI462116B
TWI462116B TW100102676A TW100102676A TWI462116B TW I462116 B TWI462116 B TW I462116B TW 100102676 A TW100102676 A TW 100102676A TW 100102676 A TW100102676 A TW 100102676A TW I462116 B TWI462116 B TW I462116B
Authority
TW
Taiwan
Prior art keywords
wires
stacks
memory
semiconductor material
layer
Prior art date
Application number
TW100102676A
Other languages
Chinese (zh)
Other versions
TW201126535A (en
Inventor
Hang Ting Lue
Chun Hsiung Hung
Shin Jang Shen
Original Assignee
Macronix Int Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/692,798 external-priority patent/US8208279B2/en
Application filed by Macronix Int Co Ltd filed Critical Macronix Int Co Ltd
Publication of TW201126535A publication Critical patent/TW201126535A/en
Application granted granted Critical
Publication of TWI462116B publication Critical patent/TWI462116B/en

Links

Landscapes

  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Description

具有改良串列選擇線和位元線接觸佈局的三維記憶陣列Three-dimensional memory array with improved tandem select line and bit line contact layout

本發明係關於高密度記憶裝置,特別是關於具有多層平面記憶胞的記憶裝置以提供三維陣列。This invention relates to high density memory devices, and more particularly to memory devices having multiple layers of planar memory cells to provide a three dimensional array.

當積體電路中的裝置之臨界尺寸縮減至通常記憶胞技術的極限時,設計者則轉而尋求記憶胞的多重堆疊平面技術以達成更高的儲存密度,以及每一個位元較低的成本。舉例而言,薄膜電晶體技術已經應用在電荷捕捉記憶體之中,可參閱如賴等人的論文"A multi-Layer Stackable Thin-Film Transistor(TFT)NAND-Type Flash Memory",IEEE Int'l Electron Device Meeting,2006年12月11~13日;及Jung等人的論文"Three Dimensionally Stack NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS structure for Beyond 30nm Node",IEEE Int'l Electron Device Meeting,2006年12月11~13日。When the critical size of the device in the integrated circuit is reduced to the limit of the usual memory cell technology, the designer turns to the memory cell multi-stack plane technology to achieve higher storage density and lower cost per bit. . For example, thin film transistor technology has been applied to charge trapping memory, see the paper "A multi-Layer Stackable Thin-Film Transistor (TFT) NAND-Type Flash Memory", IEEE Int'l Electron Device Meeting, December 11-13, 2006; and Jung et al.'s paper "Three Dimensionally Stack NAND Flash Memory Technology Using Stacking Single Crystal Si Layers on ILD and TANOS structure for Beyond 30nm Node", IEEE Int'l Electron Device Meeting, December 11-13, 2006.

此外,交會點陣列技術也已經應用在反熔絲記憶體之中,可參閱如Johnson等人的論文"512-Mb PROM with a Three Dimensional Array of Diode/Anti-fuse Memory Cells",IEEE J. of Solid-state Circuits,vol. 38,no. 11,2003年11月。在Johnson等人所描述的設計中,多層字元線及位元線被使用,其具有記憶元件於交會點。此記憶元件包含p+多晶矽陽極與字元線連接,及n+多晶矽陰極與位元線連接,而陰極與陽極之間由反熔絲材料分隔。In addition, intersection point array technology has also been applied to anti-fuse memory, see the paper "512-Mb PROM with a Three Dimensional Array of Diode/Anti-fuse Memory Cells" by IEEE J. of Solid-state Circuits, vol. 38, no. 11, November 2003. In the design described by Johnson et al., multi-layer word lines and bit lines are used with memory elements at the intersection. The memory element comprises a p+ polysilicon anode connected to a word line, and the n+ polysilicon cathode is connected to the bit line, and the cathode and anode are separated by an antifuse material.

在由賴、Jung、等人所描述的製程中,每一個記憶層使用多道關鍵微影步驟。因此,製造此裝置所需的關鍵微影步驟的數目會是其所使用記憶層數目的倍數。因此,雖然可以藉由使用三維陣列達到較高的密度,然而較高的製造成本也限制了此技術的使用範圍。In the process described by Lai, Jung, et al., each memory layer uses multiple key lithography steps. Thus, the number of critical lithography steps required to fabricate this device will be a multiple of the number of memory layers used. Thus, while higher densities can be achieved by using three-dimensional arrays, higher manufacturing costs also limit the scope of use of this technology.

另一種使用垂直反及閘記憶胞結構於電荷捕捉記憶體中的技術也已經在Tanaka等人的論文"Bit Cost Scaleable Technology with Punch and Plug Process for Ultra High Density Flash Memory",2007 Symposium on VLSI Technology Digest of Technical Papers,pp. 14~15,2007年6月12~14日,有所描述。於Tanaka等人描述的結構中,包括多閘極場效電晶體結構,其具有類似反及閘操作的垂直通道,使用矽氧氮氧矽(SONOS)型態電荷捕捉記憶胞結構,以在每一個閘極/垂直通道介面處產生儲存位置。此記憶結構是基於安排作為垂直通道的柱狀半導體材料而構成多閘極記憶胞,具有一較低的選擇閘極靠近基板,及一較高的選擇閘極於其上方。複數個水平控制閘極係使用與柱狀物相交的平面電極層而形成。作為水平控制閘極的平面電極層並不需要關鍵微影,而因此節省成本。然而對每一個垂直記憶胞而言仍是需要許多關鍵微影步驟。此外,此方法的多層結構中控制閘極的數目仍是有所限制,其係由例如是垂直通道導電性、所使用的程式化及抹除操作等因素來決定。Another technique for using vertical anti-gate memory cell structures in charge trapping memory has also been published in Tanaka et al., "Bit Cost Scaleable Technology with Punch and Plug Process for Ultra High Density Flash Memory", 2007 Symposium on VLSI Technology Digest. Of Technical Papers, pp. 14~15, June 12-14, 2007, described. In the structure described by Tanaka et al., including a multi-gate field-effect transistor structure, which has a vertical channel similar to the anti-gate operation, uses a SONOS type charge trapping memory cell structure to A storage location is created at a gate/vertical channel interface. The memory structure is based on a columnar semiconductor material arranged as a vertical channel to form a multi-gate memory cell having a lower select gate close to the substrate and a higher select gate above it. A plurality of horizontal control gates are formed using a planar electrode layer that intersects the pillars. The planar electrode layer as a horizontal control gate does not require critical lithography, and thus saves cost. However, many critical lithography steps are still required for each vertical memory cell. In addition, the number of control gates in the multilayer structure of this method is still limited, which is determined by factors such as vertical channel conductivity, stylization used, and erase operations.

具有此三維陣列,記憶胞和互連線可以利用高密度方式堆疊。With this three-dimensional array, memory cells and interconnects can be stacked in a high density manner.

因此需要提供一種低製造成本的三維積體電路記憶體結構,包括可靠、非常小記憶元件及佔用小面積的內連線和接觸。It is therefore desirable to provide a three-dimensional integrated circuit memory structure with low manufacturing cost, including reliable, very small memory components and interconnects and contacts that occupy a small area.

此處所描述技術為一種三維記憶裝置,具有積體電路基板;複數個長條半導體材料堆疊;複數條導線;以及記憶元件。The technique described herein is a three-dimensional memory device having an integrated circuit substrate; a plurality of strips of semiconductor material stacked; a plurality of wires; and a memory element.

此複數個長條半導體材料堆疊具有山脊狀且包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置。此複數個長條半導體材料堆疊分享該複數個平面位置中的相同平面位置之長條半導體材料藉由階梯狀結構連接至複數個位元線接觸中的一個相同位元線接觸,如此該階梯狀結構中的階梯位於長條半導體材料的端點處。在許多不同的實施例中,如此的位置可以節省晶片面積,而不會像在長條半導體材料的端點之外連接不同層中的位元線一般。The plurality of strips of semiconductor material stack have a ridge shape and include at least two elongated semiconductor materials separated by an insulating layer to form different planar locations in a plurality of planar locations. The plurality of elongated semiconductor material stacks share the same planar position of the plurality of planar locations, and the elongated semiconductor material is connected to the same bit line contact of the plurality of bit line contacts by the stepped structure, such that the step is The steps in the structure are located at the ends of the elongated semiconductor material. In many different embodiments, such a location can save wafer area without connecting bit lines in different layers beyond the ends of the elongated semiconductor material.

此複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該長條半導體材料的表面與該複數條導線交會點建立一三維陣列的交會區域。The plurality of wires are arranged orthogonal to the plurality of stacks and are conformed to the plurality of stacks such that a three-dimensional array of intersections is established between the surface of the elongated semiconductor material and the plurality of wire intersections.

此記憶元件於該交會區域,其經由該長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞。The memory element is in the intersection region, and the memory cell of the three-dimensional array is accessible via the elongated semiconductor material and the plurality of wires.

本發明也揭露一種三維記憶裝置,具有積體電路基板;複數個長條半導體材料堆疊;許多複數條導線;記憶元件;以及複數個導電順形結構。The invention also discloses a three-dimensional memory device having an integrated circuit substrate; a plurality of elongated semiconductor material stacks; a plurality of plurality of wires; a memory element; and a plurality of conductive conformal structures.

該複數個堆疊具有山脊狀且包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置。分享該複數個平面位置中的相同平面位置之長條半導體材料是互連的。The plurality of stacks have a ridge shape and include at least two elongated semiconductor materials separated by an insulating layer to form different planar locations in the plurality of planar locations. The elongated semiconductor materials sharing the same planar position in the plurality of planar locations are interconnected.

許多複數條導線包括第一、第二及第三複數條導線。Many of the plurality of wires include the first, second, and third plurality of wires.

第一複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該長條半導體材料的表面與該複數條導線交會點建立一三維陣列的交會區域。The first plurality of wires are arranged orthogonal to the plurality of stacks and are conformed to the plurality of stacks such that a three-dimensional array of intersections is established between the surface of the elongated semiconductor material and the plurality of wire intersections.

此記憶元件於該交會區域,其經由該長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞。The memory element is in the intersection region, and the memory cell of the three-dimensional array is accessible via the elongated semiconductor material and the plurality of wires.

每一個導電順形結構於該複數個堆疊中的一不同堆疊之上。在某些實施例中,串列選擇線經由第二複數條導線及第三複數條導線與該複數個導電順形結構中的不同導電順形結構電性連接。Each of the electrically conductive conformal structures is over a different stack of the plurality of stacks. In some embodiments, the tandem select line is electrically coupled to the different conductive conformal structures of the plurality of conductive conformal structures via the second plurality of wires and the third plurality of wires.

此第二複數條導線安排於該複數個堆疊之上,且與該長條半導體材料平行。該第二複數條導線中的每一條導線與該複數個導電順形結構中的不同導電順形結構電性連接。The second plurality of wires are arranged over the plurality of stacks and are parallel to the elongated semiconductor material. Each of the second plurality of wires is electrically coupled to a different one of the plurality of electrically conductive conical structures.

此第三複數條導線安排於該第一複數條導線之上,且與該第一複數條導線平行,該第三複數條導線中的每一條導線與該第二複數條導線中的不同導線連接。The third plurality of wires are arranged on the first plurality of wires and parallel to the first plurality of wires, and each of the third plurality of wires is connected to a different one of the second plurality of wires .

在某些實施例中,此第二複數條導線與此第三複數條導線是不同金屬層中的導線,其共同將串列選擇信號電性連接至不同的導電順形結構。In some embodiments, the second plurality of wires and the third plurality of wires are wires in different metal layers that collectively electrically connect the series select signals to different conductive conformal structures.

此外,此處也描述一種根基於能隙工程多晶矽-氧化矽-氮化矽-氧化矽-氧化矽(BE-SONOS)技術之三維、埋藏通道、無接面的反及閘快閃結構。In addition, a three-dimensional, buried channel, junctionless reverse gate flash structure based on the energy gap engineering polycrystalline germanium-yttria-yttria-yttria-yttria-yttria (BE-SONOS) technique is also described herein.

本發明之目的,特徵,和實施例,會在下列實施方式的章節中搭配圖式被描述。The objects, features, and embodiments of the present invention will be described in the accompanying drawings.

本發明以下的實施例描述係搭配圖式進行說明。The following description of the embodiments of the present invention will be described in conjunction with the drawings.

第1圖顯示一個三維可程式化電阻記憶陣列之一個2x2記憶胞部分的示意圖,在圖中將填充材料省略以清楚的表示構成此三維陣列之長條半導體材料的堆疊及正交的導線。在此圖式中,僅顯示兩個平面。然而,平面的數目可以擴展至非常大的數目。如第1圖中所示,此記憶陣列形成於具有一絕緣層10於其下的半導體或其他結構(未示)上方的積體電路基板之上。此記憶陣列包括複數個長條半導體材料的堆疊11、12、13、14彼此由絕緣材料21、22、23、24分隔。此堆疊為山脊形狀且沿著圖中的Y軸方向延伸,所以長條半導體材料11~14可以組態為位元線,且延伸出基板。長條半導體材料11、13可以做為第一記憶平面上的位元線,而長條半導體材料12、14可以做為第二記憶平面上的位元線。一層記憶材料15,例如是反熔絲材料,在此範例中包覆於長條半導體材料之上,且在其他的範例中,至少形成於長條半導體材料的側壁。複數條導線16、17與這些長條半導體材料堆疊正交。複數條導線16、17具有與這些長條半導體材料堆疊順形的表面,並填入由這些堆疊所定義的溝渠(例如20)之中,且在介於長條半導體材料11~14堆疊與複數條導線16、17之間側表面交會點之處定義多層陣列的介面區域。一層金屬矽化物(例如矽化鎢、矽化鈷、矽化鈦)18、19形成於複數條導線16、17的上表面。Figure 1 shows a schematic diagram of a 2x2 memory cell portion of a three-dimensional programmable resistive memory array in which the fill material is omitted to clearly represent the stacked and orthogonal wires of the elongated semiconductor material that make up the three dimensional array. In this illustration, only two planes are shown. However, the number of planes can be extended to a very large number. As shown in Fig. 1, the memory array is formed over an integrated circuit substrate having a semiconductor or other structure (not shown) underlying an insulating layer 10. This memory array comprises a stack of a plurality of elongated semiconductor materials 11, 12, 13, 14 separated from one another by insulating materials 21, 22, 23, 24. The stack is ridge shaped and extends along the Y-axis direction in the figure, so the elongated semiconductor materials 11-14 can be configured as bit lines and extend out of the substrate. The elongated semiconductor material 11, 13 can be used as a bit line on the first memory plane, and the elongated semiconductor material 12, 14 can be used as a bit line on the second memory plane. A layer of memory material 15, such as an anti-fuse material, is overlaid on the elongated semiconductor material in this example, and in other examples, at least on the sidewalls of the elongated semiconductor material. A plurality of wires 16, 17 are orthogonal to the stack of elongated semiconductor materials. The plurality of wires 16, 17 have a smooth surface that is stacked with the elongated semiconductor material and filled into the trenches (e.g., 20) defined by the stacks, and stacked and plural between the elongated semiconductor materials 11-14 The intersection of the side surfaces between the strips 16, 17 defines the interface area of the multilayer array. A layer of metal telluride (e.g., tungsten telluride, cobalt telluride, titanium telluride) 18, 19 is formed on the upper surface of the plurality of wires 16, 17.

記憶材料層15,可以包含例如是二氧化矽、氮氧化矽或是其他氧化矽的反熔絲材料,舉例而言,具有介於1到5奈米數量級的厚度。也可以利用其他的反熔絲材料,例如氮化矽。長條半導體材料11~14可以是具有第一導電型態(例如p型)的半導體材料。導線16、17可以是具有第二導電型態(例如n型)的半導體材料。舉例而言,長條半導體材料11~14可以使用p型多晶矽而導線16、17可以使用濃摻雜的n+型多晶矽。長條半導體材料的寬度必須足以提供二極體操作所需的空乏區域。因此,記憶胞包含一個形成於三維交會點陣列中介於長條多晶矽及導線整流器間的PN接面,此PN接面具有一可程式反熔絲層於陰極與陽極之間。在其他的實施例中,可以使用不同的可程式電阻記憶材料,包括轉換金屬氧化物,例如鎢上方的氧化鎢或是摻雜金屬氧化物的長條半導體材料。如此的材料可以被程式化及抹除,且可以在儲存多位元於一記憶胞中的操作應用。The memory material layer 15 may comprise an antifuse material such as cerium oxide, cerium oxynitride or other cerium oxide, for example, having a thickness on the order of 1 to 5 nanometers. Other antifuse materials, such as tantalum nitride, can also be utilized. The elongated semiconductor materials 11-14 may be semiconductor materials having a first conductivity type (e.g., p-type). The wires 16, 17 may be semiconductor materials having a second conductivity type (e.g., n-type). For example, the elongated semiconductor materials 11-14 may use p-type polysilicon and the wires 16, 17 may use a heavily doped n+ type polysilicon. The width of the strip of semiconductor material must be sufficient to provide the depletion region required for diode operation. Therefore, the memory cell includes a PN junction formed between the strip polysilicon and the wire rectifier in an array of three-dimensional intersection points, the PN mask having a programmable antifuse layer between the cathode and the anode. In other embodiments, different programmable resistive memory materials can be used, including converting metal oxides, such as tungsten oxide over tungsten or elongated semiconductor materials doped with metal oxide. Such materials can be programmed and erased, and can be used in operational applications where multiple bits are stored in a memory cell.

第2圖顯示在導線16與長條半導體材料14交會處沿著記憶胞Z-X平面的剖面圖。主動區域25、26形成長條半導體材料14的兩側及介於導線16與長條半導體材料14之間。在自然狀態,反熔絲記憶材料層15具有高電阻。於程式化之後,此反熔絲記憶材料崩潰,導致反熔絲記憶材料內的主動區域25、26之一或兩者回到一低電阻狀態。在此處所描述的實施例中,每一個記憶胞具有兩個主動區域25、26形成長條半導體材料14的兩側。第3圖顯示在導線16、17與長條半導體材料14交會處沿著記憶胞X-Y平面的剖面圖。圖中顯示自由導線16定義的字元線經過反熔絲記憶材料層15至長條半導體材料14的電流路徑。Figure 2 shows a cross-sectional view along the Z-X plane of the memory cell at the intersection of the conductor 16 and the elongated semiconductor material 14. The active regions 25, 26 form both sides of the elongated semiconductor material 14 and between the wires 16 and the elongated semiconductor material 14. In the natural state, the antifuse memory material layer 15 has a high electrical resistance. After stylization, the anti-fuse memory material collapses, causing one or both of the active regions 25, 26 within the anti-fuse memory material to return to a low resistance state. In the embodiment described herein, each memory cell has two active regions 25, 26 forming the sides of the elongated semiconductor material 14. Figure 3 shows a cross-sectional view along the X-Y plane of the memory cell where the wires 16, 17 meet the elongated semiconductor material 14. The figure shows the current path of the word line defined by the free wire 16 through the antifuse memory material layer 15 to the elongated semiconductor material 14.

電子的流動是由第3圖中的實線顯示,自n+導線16進入p型長條半導體材料14,且沿著長條半導體材料14(虛線箭頭)至感測放大器,在感測放大器處可以量測以指示所選取記憶胞的狀態。在一典型實施例中,係使用約1奈米厚的氧化矽作為反熔絲材料,且利用第28圖中的晶片內控制電路施加包含5~7伏特脈衝及脈衝寬度約為1微秒的程式化脈衝。而讀取脈衝是利用第28圖中的晶片內控制電路施加包含1~2伏特脈衝及與組態相關的脈衝寬度。此讀取脈衝可以遠短於程式化脈衝。The flow of electrons is shown by the solid line in Figure 3, from the n+ wire 16 into the p-type elongated semiconductor material 14, and along the elongated semiconductor material 14 (dashed arrow) to the sense amplifier, at the sense amplifier Measure to indicate the state of the selected memory cell. In an exemplary embodiment, about 1 nm thick yttrium oxide is used as the antifuse material, and a pulse of 5-7 volts and a pulse width of about 1 microsecond are applied using the in-wafer control circuit of FIG. Stylized pulses. The read pulse is applied with a pulse of 1 to 2 volts and a configuration-dependent pulse width using the in-wafer control circuit of FIG. This read pulse can be much shorter than the programmed pulse.

第4圖顯示兩個記憶胞平面,每一個平面具有六個記憶胞。這些記憶胞由具有介於陰極與陽極之間的反熔絲材料層(虛線代表)之二極體標示來表示。此兩個記憶胞平面由作為第一字元線WLn和第二字元線WLn+1的導線16和17與分別作為位元線BLn、BLn+1和BLn+2的第一、第二和第三長條半導體材料堆疊51、52,53、54和55、56交會處定義出此陣列的第一和第二層。記憶胞的第一平面包括在長條半導體材料堆疊52上的記憶胞30、31,在長條半導體材料堆疊54上的記憶胞32、33以及在長條半導體材料堆疊56上的記憶胞34、35。記憶胞的第二平面包括在長條半導體材料堆疊51上的記憶胞40、41,在長條半導體材料堆疊53上的記憶胞42、43以及在長條半導體材料堆疊55上的記憶胞44、45。如圖中所示,導線60係作為字元線WLn,其包括垂直延伸的60-1、60-2、60-3與第1圖中介於堆疊間的溝渠內的材料對應,以將導線60與每一個平面中的3個例示長條半導體材料堆疊耦接。一個陣列可以實施成如此處所描述般具有許多層,以構成接近或到達每晶片兆位元之非常高密度的記憶體。Figure 4 shows two memory cell planes, each with six memory cells. These memory cells are represented by a diode with a layer of antifuse material (represented by dashed lines) between the cathode and the anode. The two memory cell planes are composed of the conductors 16 and 17 as the first word line WLn and the second word line WLn+1 and the first and second sums as the bit lines BLn, BLn+1 and BLn+2, respectively. The intersection of the third strip of semiconductor material stacks 51, 52, 53, 54 and 55, 56 defines the first and second layers of the array. The first plane of the memory cell includes memory cells 30, 31 on the elongated semiconductor material stack 52, memory cells 32, 33 on the elongated semiconductor material stack 54, and memory cells 34 on the elongated semiconductor material stack 56, 35. The second plane of the memory cell includes memory cells 40, 41 on the elongated semiconductor material stack 51, memory cells 42, 43 on the elongated semiconductor material stack 53, and memory cells 44 on the elongated semiconductor material stack 55, 45. As shown in the figure, the wire 60 is used as the word line WLn, which includes vertically extending 60-1, 60-2, 60-3 corresponding to the material in the trench between the stacks in FIG. 1 to connect the wire 60. Coupled with three exemplary strips of semiconductor material in each plane. An array can be implemented with as many layers as described herein to form a very high density memory that approaches or reaches megabits per wafer.

第5圖顯示一個三維可程式化電阻記憶陣列之一個2x2記憶胞部分的示意圖,在圖中具有填充材料以清楚的表示與構成此三維陣列之長條半導體材料的堆疊及正交的導線相對關係。在此圖式中,僅顯示兩層。然而,層次的數目可以擴展至非常大的數目。如第5圖中所示,此記憶陣列形成於具有一絕緣層110於其下的半導體或其他結構(未示)上方的積體電路基板之上。此記憶陣列包括複數個長條半導體材料的堆疊111、112、113、114彼此由絕緣材料121、122、123、124分隔。此堆疊為山脊形狀且沿著圖中的Y軸方向延伸,所以長條半導體材料111~114可以組態為位元線,且延伸出基板。長條半導體材料111、113可以做為第一記憶平面上的位元線,而長條半導體材料112、114可以做為第二記憶平面上的位元線。Figure 5 shows a schematic diagram of a 2x2 memory cell portion of a three-dimensional programmable resistive memory array with fill material in the figure to clearly represent the stack and orthogonal conductors of the long strip of semiconductor material that make up the three-dimensional array. . In this illustration, only two layers are shown. However, the number of levels can be extended to very large numbers. As shown in Fig. 5, the memory array is formed over an integrated circuit substrate having a semiconductor or other structure (not shown) underlying an insulating layer 110. This memory array includes a stack 111, 112, 113, 114 of a plurality of elongated semiconductor materials separated from one another by insulating materials 121, 122, 123, 124. The stack is ridge shaped and extends along the Y-axis direction in the figure, so the elongated semiconductor materials 111-114 can be configured as bit lines and extend out of the substrate. The elongated semiconductor material 111, 113 can be used as a bit line on the first memory plane, and the elongated semiconductor material 112, 114 can be used as a bit line on the second memory plane.

在第一堆疊中介於長條半導體材料111和112之間的絕緣材料121以及在第二堆疊中介於長條半導體材料113和114之間的絕緣材料123具有大於等於約40奈米的等效氧化層厚度(EOT),其中等效氧化層厚度(EOT)是此絕緣材料的厚度乘以氧化矽與絕緣層之介電常數比值所轉換之氧化層厚度。此處所使用的名詞"約40奈米"是考慮典型如此裝置的製程中約10%數量級變動的結果。此絕緣層的厚度對於減少此結構中相鄰記憶胞間的干擾具有重要的影響。在某些實施例中,絕緣材料的等效氧化層厚度(EOT)可以最小達到30奈米而仍能在相鄰層間具有足夠的隔離。The insulating material 121 interposed between the elongated semiconductor materials 111 and 112 in the first stack and the insulating material 123 interposed between the elongated semiconductor materials 113 and 114 in the second stack have an equivalent oxidation of about 40 nm or more. The layer thickness (EOT), wherein the equivalent oxide thickness (EOT) is the thickness of the insulating material multiplied by the thickness of the oxide layer converted by the ratio of the dielectric constant of the tantalum oxide to the insulating layer. The term "about 40 nm" as used herein is the result of an approximately 10% order of magnitude change in the process of a typical such device. The thickness of this insulating layer has an important influence on reducing interference between adjacent memory cells in this structure. In some embodiments, the equivalent oxide thickness (EOT) of the insulating material can be as small as 30 nanometers while still having sufficient isolation between adjacent layers.

一層記憶材料115,例如是介電電荷捕捉結構,在此範例中包覆於長條半導體材料之上。複數條導線116、117與這些長條半導體材料堆疊正交。複數條導線116、117具有與這些長條半導體材料堆疊順形的表面,並填入由這些堆疊所定義的溝渠(例如120)之中,且在介於長條半導體材料111~114堆疊與複數條導線116、117之間側表面交會點之處定義多層陣列的介面區域。一層金屬矽化物(例如矽化鎢、矽化鈷、矽化鈦)118、119形成於複數條導線116、117的上表面。A layer of memory material 115, such as a dielectric charge trapping structure, is overlaid over the elongated semiconductor material in this example. A plurality of wires 116, 117 are orthogonal to the stack of elongated semiconductor materials. The plurality of wires 116, 117 have a surface that is stacked with the elongated semiconductor material and filled into the trenches (eg, 120) defined by the stacks, and stacked and plural between the elongated semiconductor materials 111-114 The intersection of the side surfaces between the strips 116, 117 defines the interface area of the multilayer array. A layer of metal telluride (e.g., tungsten telluride, cobalt telluride, titanium telluride) 118, 119 is formed on the upper surface of the plurality of wires 116, 117.

奈米線的金氧半場效電晶體型態藉由提供奈米線或奈米管結構於導線111~114之上的通道區域而也被組態成此種方式,如同Paul等人的論文"Impact of a Process Variation on Nanowire and Nanotube Device Performance ",IEEE Transactions on Electron Device,Vol. 54,No. 9,2007年9月11~13日,在此引為參考資料。The gold-oxygen half-field effect transistor pattern of the nanowire is also configured in such a way by providing a channel region of the nanowire or nanotube structure over the conductors 111-114, as Paul et al. Impact of a Process Variation on Nanowire and Nanotube Device Performance ", IEEE Transactions on Electron Device, Vol. 54, No. 9, September 11-13, 2007, which is incorporated herein by reference.

因此,可以形成組態為反及閘快閃陣列的三維陣列的SONOS型態記憶胞。源極、汲極和通道形成於矽長條半導體材料111~114中,記憶材料層115包括氧化矽(O)的穿隧介電層97、氮化矽(N)的電荷儲存層98、氧化矽(O)的阻擋介電層99及多晶矽(S)的導線116、117。Thus, a SONOS-type memory cell configured to be a three-dimensional array of anti-gate flash arrays can be formed. Source, drain and channel are formed in the germanium strip semiconductor material 111-114. The memory material layer 115 includes a tunneling dielectric layer 97 of germanium oxide (O), a charge storage layer 98 of tantalum nitride (N), and oxidation.矽(O) blocks the dielectric layer 99 and the wires 116, 117 of the polysilicon (S).

長條半導體材料111~114可以是p型半導體材料而導線116、117可以使用相同或不同的半導體材料(例如p+型態)。舉例而言,長條半導體材料111~114可以是p型多晶矽,或是p型磊晶單晶矽,而導線116、117可以使用相對濃摻雜的p+多晶矽。The elongated semiconductor materials 111-114 may be p-type semiconductor materials and the wires 116, 117 may use the same or different semiconductor materials (e.g., p+ type). For example, the elongated semiconductor materials 111-114 may be p-type polycrystalline germanium or p-type epitaxial single crystal germanium, and the wires 116, 117 may use relatively heavily doped p+ polycrystalline germanium.

替代地,長條半導體材料111~114可以是n型半導體材料而導線116、117可以使用相同或不同導電型態的半導體材料(例如p+型態)。此n型半導體材料安排導致埋藏-通道空乏型態的電荷捕捉記憶胞。舉例而言,長條半導體材料111~114可以是n型多晶矽,或是n型磊晶單晶矽,而導線116、117可以使用相對濃摻雜的p+多晶矽。典型n型長條半導體材料的摻雜濃度約為1018 /cm3 ,可使用實施例的範圍大約在1017 /cm3 到1019 /cm3 之間。使用n型長條半導體材料對於無接面的實施例是較佳的選擇,因為可以改善沿著反及閘串列的導電率及因此允許更高的讀取電流。Alternatively, the elongated semiconductor materials 111-114 may be n-type semiconductor materials and the wires 116, 117 may use semiconductor materials of the same or different conductivity types (eg, p+ type). This n-type semiconductor material arrangement results in a buried-channel depletion pattern of charge trapping memory cells. For example, the elongated semiconductor materials 111-114 may be n-type polysilicon or n-type epitaxial single crystal germanium, and the wires 116, 117 may use relatively heavily doped p+ polysilicon. The doping concentration of a typical n-type elongated semiconductor material is about 10 18 /cm 3 , and the range of embodiments can be used to be between about 10 17 /cm 3 and 10 19 /cm 3 . The use of n-type strip semiconductor materials is a preferred choice for junctionless embodiments because the conductivity along the anti-gate string and thus the higher read current can be improved.

因此,包含場效電晶體的此記憶胞具有電荷儲存結構形成於此交會點的三維陣列結構中。使用約25奈米數量級的長條半導體材料和導線厚度,且具有山脊形狀堆疊的間距也是約25奈米數量級,具有數十層(例如三十層)的裝置在單晶片中可以達到兆(1012 )位元的容量。Thus, this memory cell containing a field effect transistor has a charge storage structure formed in a three dimensional array structure at this intersection. A strip of semiconductor material and wire thickness on the order of about 25 nanometers is used, and the pitch of the ridge-shaped stack is also on the order of about 25 nanometers, and devices having tens of layers (for example, thirty layers) can reach megas in a single wafer (10) 12 ) The capacity of the bit.

此記憶材料層115可以包含其他的電荷儲存結構。舉例而言,可以使用能隙工程(BE)之SONOS電荷儲存結構所取代,其包括介電穿隧層97,且層次間在0V偏壓實具有倒U型價帶。在一實施例中,此多層穿隧層包括第一層稱為電洞穿隧層,第二層稱為能帶補償層及第三層稱為隔離層。在此實施例中,電洞穿隧層97包括二氧化矽層形成於長條半導體材料的側表面,其可利用如現場蒸汽產生(in-situ steam generation,ISSG)之方法形成,並選擇性地利用沉積後一氧化氮退火或於沉積過程中加入一氧化氮之方式來進行氮化。第一層中的二氧化矽之厚度係小於20埃,且最好是小於15埃,在一代表性實施例中為10~12埃。This memory material layer 115 can comprise other charge storage structures. For example, a gap-engineered (BE) SONOS charge storage structure can be used, which includes a dielectric tunneling layer 97 with an inverted U-type valence band at 0V bias between layers. In an embodiment, the multilayer tunneling layer includes a first layer called a tunneling layer, a second layer called a band compensation layer, and a third layer called an isolation layer. In this embodiment, the tunneling layer 97 includes a ruthenium dioxide layer formed on a side surface of the elongated semiconductor material, which may be formed by a method such as in-situ steam generation (ISSG), and optionally Nitriding is carried out by annealing nitric oxide after deposition or by adding nitric oxide during deposition. The thickness of the cerium oxide in the first layer is less than 20 angstroms, and preferably less than 15 angstroms, and in a representative embodiment is 10 -12 angstroms.

在此實施例中,能帶補償層包含氮化矽層係位於電洞穿隧層之上,且其係利用像是低壓化學氣相沉積LPCVD之技術,於680℃下使用二氯矽烷(dichlorosilane,DCS)與氨之前驅物來形成。於其他製程中,能帶補償層包括氮氧化矽,其係利用類似之製程及一氧化二氮前驅物來形成。能帶補償層中的氮化矽層之厚度係小於30埃,且較佳為25埃或更小。In this embodiment, the band compensation layer comprises a tantalum nitride layer on top of the tunnel tunnel layer, and the system uses a technique such as low pressure chemical vapor deposition LPCVD to use dichlorosilane at 680 ° C. DCS) is formed with an ammonia precursor. In other processes, the bandgap compensation layer includes bismuth oxynitride, which is formed using a similar process and a nitrous oxide precursor. The thickness of the tantalum nitride layer in the energy compensation layer is less than 30 angstroms, and preferably 25 angstroms or less.

在此實施例中,隔離層包含二氧化矽層係位於能帶補償層上,且其係利用像是LPCVD高溫氧化物HTO沉積之方式形成。隔離層中的二氧化矽層厚度係小於35埃,且較佳為25埃或更小。如此的三層穿隧介電層產生了”倒U”形狀之價帶能階。In this embodiment, the spacer layer comprises a ruthenium dioxide layer on the band compensation layer and is formed by means of LPCVD high temperature oxide HTO deposition. The thickness of the ruthenium dioxide layer in the spacer layer is less than 35 angstroms, and preferably 25 angstroms or less. Such a three-layer tunneling dielectric layer produces a valence band energy level of an "inverted U" shape.

第一處之價帶能階係可使電場足以誘發電洞穿隧通過該第一處與半導體主體(或長條半導體材料)介面間的薄區域,且其亦足以提升第一處後之價帶能階,以有效消除第一處後的複合穿隧介電層內的電洞穿隧現象。此種結構,除了建立此三層穿隧介電層”倒U”形狀之價帶,也可達成電場輔助之高速電洞穿隧,其亦可在電場不存在或為了其他操作目的(像是從記憶胞讀取資料或程式化鄰近之記憶胞)而僅誘發小電場之情形下,有效的預防電荷流失通過經複合穿隧介電層結構。The first valence band energy system allows the electric field to be sufficient to induce tunneling through the thin region between the first portion and the semiconductor body (or strip of semiconductor material) interface, and which is sufficient to enhance the valence band after the first portion Energy level, in order to effectively eliminate the hole tunneling phenomenon in the composite tunneling dielectric layer after the first portion. Such a structure, in addition to establishing the "U-shaped" valence band of the three-layer tunneling dielectric layer, can also achieve electric field-assisted high-speed hole tunneling, which may also exist in the electric field or for other operational purposes (like from In the case where the memory cell reads data or stylizes adjacent memory cells and induces only a small electric field, it effectively prevents charge loss through the composite tunneling dielectric layer structure.

於一代表性之裝置中,記憶材料層115包含能隙工程(BE)複合穿隧介電層,其包含第一層的二氧化矽之厚度係小於2奈米,一層氮化矽層之厚度係小於3奈米及一第二層的二氧化矽層厚度係小於4奈米。在一實施例中,此複合穿隧介電層包含超薄氧化矽層O1(例如小於等於15埃)、超薄氮化矽層N1(例如小於等於30埃)以及超薄氧化矽層O2(例如小於等於35埃)所組成,且其可在和半導體主體或長條半導體材料之介面起算的一個15埃或更小之補償下,增加約2.6電子伏特的價帶能階。藉由一低價帶能階區域(高電洞穿隧阻障)與高傳導帶能階,O2層可將N1層與電荷捕捉層分開一第二補償(例如從介面起算約30埃至45埃)。由於第二處距離介面較遠,足以誘發電洞穿隧之電場可提高第二處後的價帶能階,以使其有效地消除電洞穿隧阻障。因此,O2層並不會嚴重干擾電場輔助之電洞穿隧,同時又可增進經工程穿隧介電結構在低電場時阻絕電荷流失的能力。In a representative device, the memory material layer 115 comprises a bandgap engineering (BE) composite tunneling dielectric layer comprising a first layer of cerium oxide having a thickness of less than 2 nanometers and a thickness of a layer of tantalum nitride layer. The thickness of the ceria layer of less than 3 nm and a second layer is less than 4 nm. In one embodiment, the composite tunneling dielectric layer comprises an ultra-thin yttria layer O1 (eg, 15 angstroms or less), an ultra-thin tantalum nitride layer N1 (eg, 30 angstroms or less), and an ultra-thin yttrium oxide layer O2 ( For example, less than or equal to 35 angstroms, and it can increase the valence band energy of about 2.6 electron volts with a compensation of 15 angstroms or less from the interface of the semiconductor body or the strip of semiconductor material. The O2 layer can separate the N1 layer from the charge trapping layer by a second compensation (eg, from about 30 angstroms to 45 angstroms from the interface) by a low energy band energy region (high hole tunneling barrier) and a high conduction band energy level. ). Since the second distance interface is far enough, the electric field sufficient to induce tunneling can increase the valence band energy level after the second portion, so as to effectively eliminate the tunneling barrier. Therefore, the O2 layer does not seriously interfere with the electric field-assisted hole tunneling, and at the same time enhances the ability of the engineered tunneling dielectric structure to resist charge loss at low electric fields.

記憶材料層115中的電荷捕捉層在此實施例中包含氮化矽層之厚度係大於50埃,包括舉例而言,厚度約70埃的氮化矽,且其係利用如LPCVD方式形成。本發明也可使用其他電荷捕捉材料與結構,包括像是氮氧化矽(Six Oy Nz )、高含矽量之氮化物、高含矽量之氧化物,包括內嵌奈米粒子的捕捉層等等。The charge trapping layer in the memory material layer 115 in this embodiment comprises a tantalum nitride layer having a thickness greater than 50 angstroms, including, for example, tantalum nitride having a thickness of about 70 angstroms, and which is formed using, for example, LPCVD. Other charge trapping materials and structures can also be used in the present invention, including, for example, cerium oxynitride (Si x O y N z ), high cerium-containing nitrides, high cerium oxides, including embedded nanoparticles. Capture layers and more.

在此實施例中記憶材料層115中的阻擋介電層是氧化矽,其厚度係大於50埃,且包含在此實施例中式90埃,且可以使用將氮化矽進行濕式轉換之濕爐管氧化製程。在其他實施例中則可以使用高溫氧化物(HTO)或是LPCVD沉積方式形成的氧化矽。也可以使用其他的阻擋介電層材料例如是氧化鋁的高介電係數材料。The blocking dielectric layer in the memory material layer 115 in this embodiment is yttrium oxide having a thickness greater than 50 angstroms and comprising 90 angstroms in this embodiment, and a wet furnace for wet converting tantalum nitride may be used. Tube oxidation process. In other embodiments, cerium oxide formed by high temperature oxide (HTO) or LPCVD deposition may be used. Other barrier dielectric material such as high dielectric constant materials of alumina can also be used.

在一代表性實施例中,電洞穿隧層中的二氧化矽之厚度係為13埃;能帶補償層之氮化矽層厚度係為20埃;隔離層之二氧化矽層層厚度係為25埃;電荷捕捉層之氮化矽層厚度係為70埃;及阻擋介電層可以是厚度90埃的氧化矽。導線116、117的閘極材料可以是p+多晶矽(其功函數為5.1電子伏特)。In a representative embodiment, the thickness of the cerium oxide in the tunneling layer is 13 angstroms; the thickness of the lanthanum nitride layer of the energy compensation layer is 20 angstroms; and the thickness of the cerium oxide layer of the isolation layer is 25 Å; the thickness of the tantalum nitride layer of the charge trap layer is 70 angstroms; and the barrier dielectric layer may be yttrium oxide having a thickness of 90 angstroms. The gate material of the wires 116, 117 may be p+ polysilicon (having a work function of 5.1 electron volts).

第6圖顯示在導線116與長條半導體材料114交會處形成之電荷捕捉記憶胞沿著記憶胞Z-X平面的剖面圖。主動區域125、126形成長條半導體材料114的兩側及介於導線116與長條半導體材料114之間。在第6圖所描述的實施例中,每一個記憶胞是雙重閘極場效電晶體具有兩個主動區域125、126形成長條半導體材料114的兩側。Figure 6 shows a cross-sectional view of the charge trapping memory cell formed at the intersection of the conductor 116 and the elongated semiconductor material 114 along the Z-X plane of the memory cell. The active regions 125, 126 form both sides of the elongated semiconductor material 114 and between the wires 116 and the elongated semiconductor material 114. In the embodiment depicted in FIG. 6, each of the memory cells is a double gate field effect transistor having two active regions 125, 126 forming the sides of the elongated semiconductor material 114.

第7圖顯示在導線116與長條半導體材料114交會處形成之電荷捕捉記憶胞沿著記憶胞X-Y平面的剖面圖。圖中的電子流動是由虛線顯示,係沿著p型長條半導體材料114至感測放大器,在感測放大器處可以量測以指示所選取記憶胞的狀態。Figure 7 shows a cross-sectional view of the charge trapping memory cell formed at the intersection of the wire 116 and the elongated semiconductor material 114 along the X-Y plane of the memory cell. The electron flow in the figure is shown by dashed lines along the p-type strip of semiconductor material 114 to the sense amplifier, which can be measured at the sense amplifier to indicate the state of the selected memory cell.

介於作為字元線的導線116、117之間的源/汲極區域128、129、130可以是"無接面"的,也就是源/汲極的摻雜型態不需要與字元線底下的通道區域之摻雜型態不同。在此"無接面"的實施例中,電荷捕捉場效電晶體可以具有p型通道結構。此外,在某些實施例中,源/汲極的摻雜可以在定義字元線之後利用自動對準佈植的方式形成。The source/drain regions 128, 129, 130 between the wires 116, 117 as word lines may be "no junction", that is, the source/drain doping type does not need to be associated with word lines. The doping profile of the underlying channel region is different. In this "no junction" embodiment, the charge trapping field effect transistor can have a p-type channel structure. Moreover, in some embodiments, source/drain doping can be formed using auto-aligned implants after defining word lines.

在替代實施例中,長條半導體材料111~114可以在"無接面"的安排中使用淡摻雜n型半導體主體,導致形成可以在空乏模式下操作的埋藏-通道場效電晶體,此電荷捕捉記憶胞具有自然偏移至較低的臨界電壓分佈。In an alternate embodiment, the elongated semiconductor materials 111-114 may use a lightly doped n-type semiconductor body in a "joint-free" arrangement, resulting in the formation of a buried-channel field effect transistor that can operate in a depletion mode, The charge trapping memory cell has a natural offset to a lower threshold voltage distribution.

第8圖顯示兩個記憶胞平面,每一個平面具有9個電荷捕捉記憶胞安排成反及閘組態,其是一正方體的代表例示,可以包括許多平面及許多字元線。此兩個記憶胞平面由作為字元線WLn、WLn+1和WLn+2的導線160、161和162,其分別為第一、第二和第三長條半導體材料堆疊。Figure 8 shows two memory cell planes, each having nine charge trapping memory cells arranged in a reverse gate configuration, which is a representative example of a cube, which may include many planes and many word lines. The two memory cell planes are composed of wires 160, 161, and 162 as word lines WLn, WLn+1, and WLn+2, which are stacks of first, second, and third elongated semiconductor materials, respectively.

記憶胞的第一平面包括記憶胞70、71和72於一反及閘串列中,且位於長條半導體材料堆疊之上,及記憶胞73、74和75於一反及閘串列中,且位於長條半導體材料堆疊之上,以及記憶胞76、77和78於一反及閘串列中,且位於長條半導體材料堆疊之上。在此例示中,記憶胞的第二平面與立方體的底平面對應,且包括記憶胞(例如80、82和84)利用類似於第一平面的方式安排於反及閘串列中。The first plane of the memory cell includes memory cells 70, 71, and 72 in a reverse gate train, and is located on the stack of elongated semiconductor materials, and the memory cells 73, 74, and 75 are in a reverse gate train. And above the stack of elongated semiconductor materials, and the memory cells 76, 77 and 78 are in a reverse gate train and are placed over the stack of elongated semiconductor materials. In this illustration, the second plane of the memory cell corresponds to the bottom plane of the cube, and the memory cells (e.g., 80, 82, and 84) are arranged in the inverse gate train in a manner similar to the first plane.

如圖中所示,作為字元線WLn的導線160包括垂直延伸部分,其與第5圖中介於堆疊之間的溝渠120內材料對應,以將導線160與所有平面中介於長條半導體材料間的溝渠內之介面區域的記憶胞(例如第一平面中記憶胞的70、73和76)耦接。As shown in the figure, the wire 160 as the word line WLn includes a vertically extending portion corresponding to the material in the trench 120 between the stacks in FIG. 5 to sandwich the wire 160 between the long semiconductor materials and all the planes. The memory cells of the interface region within the trench (e.g., 70, 73, and 76 of the memory cells in the first plane) are coupled.

在此安排中,串列選擇電晶體85、88和89連接介於各自的反及閘串列與位元線BLn。類似地,在此安排中,底平面中的類似串列選擇電晶體連接介於各自的反及閘串列與位元線BL0。串列選擇線106、107和108在一行方向上連接此立方體每一個平面中介於山脊之間的串列選擇電晶體的閘極,且在此範例中提供串列選擇信號SSLn-1、SSLn和SSLn+1。In this arrangement, the series selection transistors 85, 88 and 89 are connected between the respective AND gate series and the bit line BLn. Similarly, in this arrangement, a similar series-selective transistor connection in the bottom plane is between the respective inverted gate train and bit line BL0. The tandem select lines 106, 107, and 108 connect the gates of the tandem selection transistors between the ridges in each of the planes in a row direction, and in this example provide the serial selection signals SSLn-1, SSLn, and SSLn+1.

在此安排中,區塊選擇電晶體90~95安排於反及閘串列的另一側且用來將一選取立方體中的反及閘串列與例如是地(顯示於第23圖中的範例)的參考源耦接。在此範例中,接地選擇線GSL與區塊選擇電晶體90~95連接,且可以使用類似於導線160、161和162的方式實施。在某些實施例中,此串列選擇電晶體及區塊選擇電晶體可以使用與記憶胞中的閘氧化層相同的介電堆疊。在其他的實施例中,可以使用沒有記憶材料的典型閘氧化層來取代。此外,通道長度及寬度可以視設計的需要而調整以提供這些電晶體適當的切換功能。In this arrangement, the block selection transistors 90-95 are arranged on the other side of the reverse gate train and are used to column the reverse gates in a selected cube with, for example, ground (shown in Figure 23). The reference source of the example) is coupled. In this example, the ground select line GSL is coupled to the block select transistors 90-95 and can be implemented using conductors 160, 161, and 162. In some embodiments, the tandem selection transistor and the block selection transistor can use the same dielectric stack as the gate oxide layer in the memory cell. In other embodiments, a typical gate oxide layer without memory material can be used instead. In addition, the channel length and width can be adjusted as needed to provide the proper switching of these transistors.

第9圖顯示一個類似於第5圖的替代結構示意圖,在圖中類似結構中使用相同的參考標號,且不再加以描述。第9圖與第5圖不同的部分是絕緣層110的表面110A及長條半導體材料113、114的側表面113A、114A於蝕刻形成字元線之後在作為字元線的導線(例如160)之間裸露出來。因此,記憶材料層115在字元線之間可以完全或部分蝕刻而不會影響到操作。然而,在某些結構中並不需要如此處所描述的一般蝕刻通過記憶材料層115來形成介電電荷捕捉結構。Figure 9 shows a schematic diagram of an alternative structure similar to Figure 5, in which similar reference numerals are used in similar structures and will not be described again. The difference between the ninth and fifth aspects is that the surface 110A of the insulating layer 110 and the side surfaces 113A, 114A of the elongated semiconductor materials 113, 114 are etched into a word line (eg, 160) as a word line. Bare exposed. Thus, the memory material layer 115 can be completely or partially etched between the word lines without affecting operation. However, in some structures it is not necessary to form a dielectric charge trapping structure through the memory material layer 115 as is generally etched as described herein.

第10圖顯示類似第6圖的記憶胞沿著Z-X平面的剖面圖。第10圖與第6圖完全相同,顯示第9圖記憶胞中的結構,在此剖面圖中與第5圖實施的結構之剖面圖相同。第11圖顯示類似第7圖的記憶胞沿著X-Y平面的剖面圖。第11圖與第7圖不同的部分是沿著長條半導體材料114的側表面(例如114A)的區域128a、129a和130a中的記憶材料被移除。主動區域125、126形成於長條半導體材料114的兩側及介於導線116與長條半導體材料114之間。Figure 10 shows a cross-sectional view of the memory cell similar to Figure 6 along the Z-X plane. Fig. 10 is exactly the same as Fig. 6, showing the structure in the memory cell of Fig. 9, which is the same as the cross-sectional view of the structure implemented in Fig. 5 in this sectional view. Figure 11 shows a cross-sectional view of the memory cell similar to Figure 7 along the X-Y plane. The difference between the 11th and 7th views is that the memory material in the regions 128a, 129a and 130a along the side surfaces (e.g., 114A) of the elongated semiconductor material 114 is removed. Active regions 125, 126 are formed on both sides of the elongated semiconductor material 114 and between the wires 116 and the elongated semiconductor material 114.

第12到16圖顯示實施如此處所描述的三維記憶陣列的基本製程階段流程圖,其僅使用2個對陣列構成對準十分關鍵影響的圖案化幕罩步驟。在第12圖中,顯示交錯沈積絕緣層210、212、214及半導體層211、213之後的結構,舉例而言半導體層可以使用全面沈積之摻雜半導體形成於晶片的陣列區域。根據實施例的不同,半導體層可以使用具有n型或p型摻雜的多晶矽或磊晶單晶矽。層間絕緣層210、212、214可以舉例而言使用二氧化矽、其他氧化矽或是氮化矽。這些層可以使用許多不同方式形成,包括業界熟知的低壓化學氣相沈積(LPCVD)等技術。Figures 12 through 16 show a basic process stage flow diagram for implementing a three-dimensional memory array as described herein, using only two patterned mask steps that are critical to the alignment of the array. In Fig. 12, the structure after interleaving the deposition insulating layers 210, 212, 214 and the semiconductor layers 211, 213 is shown. For example, the semiconductor layer can be formed on the array region of the wafer using the fully deposited doped semiconductor. Depending on the embodiment, the semiconductor layer may use polycrystalline germanium or epitaxial single crystal germanium having an n-type or p-type doping. The interlayer insulating layers 210, 212, 214 may be, for example, cerium oxide, other cerium oxide or cerium nitride. These layers can be formed in a number of different ways, including techniques well known in the art, such as low pressure chemical vapor deposition (LPCVD).

第13圖顯示第一微影圖案化步驟的結果,其用來定義複數個山脊狀的長條半導體材料堆疊250,其中此長條半導體材料是由半導體層211、213構成且由絕緣層210、212、214分隔。具有很深及很高的深寬比的溝渠可以形成於多層堆疊之間,其係使用微影為基礎的製程及施加含碳硬式幕罩和反應式離子蝕刻。Figure 13 shows the results of a first lithographic patterning step for defining a plurality of ridge-like elongated semiconductor material stacks 250, wherein the elongated semiconductor material is comprised of semiconductor layers 211, 213 and is comprised of an insulating layer 210, 212, 214 separated. Ditches with deep and very high aspect ratios can be formed between multilayer stacks using a lithography-based process and applying a carbon-containing hard mask and reactive ion etching.

第14A和14B圖分別顯示包括例如是反熔絲記憶胞結構的可程式化電阻記憶結構及包括例如是矽氧氮氧矽(SONOS)型態記憶胞結構的可程式化電荷捕捉記憶結構實施例中下一個階段的剖面圖。14A and 14B respectively show a programmable charge memory structure including, for example, an anti-fuse memory cell structure and a programmable charge trap memory structure including, for example, a SONOS type memory cell structure. A section view of the next stage.

第14A圖顯示包括如第1圖所示的單層反熔絲記憶胞結構的可程式化電阻記憶結構實施例全面沈積一記憶材料215後的結果。替代地,可以進行氧化製程而不使用全面沈積以形成氧化物於長條半導體材料裸露的側面,其中氧化物係作為記憶材料。Figure 14A shows the results of a comprehensive deposition of a memory material 215 by a programmable resistive memory structure embodiment comprising a single layer anti-fuse memory cell structure as shown in Figure 1. Alternatively, an oxidative process can be performed without the use of a full deposition to form an oxide on the exposed side of the elongated semiconductor material, with the oxide being the memory material.

第14B圖顯示包括如第4圖所示的多層電荷捕捉結構的可程式化電阻記憶結構實施例全面沈積一記憶材料315後的結果,此多層電荷捕捉結構包括一穿隧層397、一電荷捕捉層398及一阻擋層399。如第14A和14B圖所示,記憶材料層235、315是利用順形方式沈積於山脊狀的長條半導體材料堆疊(第13圖中的250)之上。Figure 14B shows the result of a comprehensive deposition of a memory material 315 comprising a tunneling layer 397, a charge trapping, comprising a programmable resistive memory structure embodiment comprising a multilayer charge trapping structure as shown in Figure 4; Layer 398 and a barrier layer 399. As shown in Figures 14A and 14B, the memory material layers 235, 315 are deposited in a sinuous manner over a ridged strip of elongated semiconductor material (250 in Figure 13).

第15圖顯示導電材料填充高深寬比溝渠步驟後的結果,此導電材料可以例如是具有n型或p型摻雜,用來作為字元線的導線,被沈積以形成層225。此外,在使用多晶矽的實施例中,一層矽化物226形成於層225之上。如圖中所示,例如低壓化學氣相沈積(LPCVD)之多晶矽等高深寬比沈積技術在此實施例中使用以填充介於山脊狀堆疊間的溝渠,即使是非常窄具有高深寬比的10奈米數量級溝渠也可行。Figure 15 shows the results of a step of filling a high aspect ratio trench with a conductive material, which may be, for example, an n-type or p-type doped, used as a wire for a word line, to be deposited to form layer 225. Moreover, in embodiments using polysilicon, a layer of germanide 226 is formed over layer 225. As shown in the figure, a polyhedral equal aspect ratio deposition technique such as low pressure chemical vapor deposition (LPCVD) is used in this embodiment to fill the trench between the ridged stacks, even if it is very narrow with a high aspect ratio of 10 Nano-scale ditches are also feasible.

第16圖顯示第二微影圖案化步驟的結果,其用來定義此三維記憶陣列中作為字元線的複數條導線260。此第二微影圖案化步驟使用單一幕罩定義此陣列中蝕刻介於導線間高深寬比溝渠的臨界尺寸,而不需要施刻通過山脊狀的堆疊。多晶矽可以使用具有對多晶矽與氧化矽或氮化矽高度選擇性的蝕刻製程來進行蝕刻。因此,替代地蝕刻製程可以使用與蝕刻半導體及絕緣層相同的幕罩進行,此製程會停止於底部絕緣層210。Figure 16 shows the results of a second lithography patterning step for defining a plurality of wires 260 as word lines in the three dimensional memory array. This second lithography patterning step uses a single mask to define the critical dimensions of the etched high aspect ratio trenches in the array without the need to engrave through the ridge-like stack. The polysilicon can be etched using an etching process that is highly selective for polysilicon and tantalum oxide or tantalum nitride. Therefore, instead of the etching process, the same mask as the etching of the semiconductor and the insulating layer can be used, and the process stops at the bottom insulating layer 210.

第17圖顯示長條半導體材料於一解碼結構中連接在一起的方式之示意圖,且顯示一選擇性的佈植步驟。第17圖的圖示係在Z軸旋轉90度,使得Y和Z軸落在紙面的平面,相對於第1圖和第16圖不同,其中X和Z軸落在紙面的平面。Figure 17 shows a schematic representation of the manner in which strips of semiconductor material are joined together in a decoding structure and shows a selective implantation step. The illustration of Fig. 17 is rotated 90 degrees on the Z axis such that the Y and Z axes fall on the plane of the paper, unlike Figs. 1 and 16, wherein the X and Z axes fall on the plane of the paper.

此外,介於長條半導體材料山脊狀堆疊之間的絕緣層,自圖中移除以顯示更多的結構細節。In addition, an insulating layer between the ridged stacks of elongated semiconductor material is removed from the figure to show more structural detail.

多層堆疊形成於絕緣層410之上,包括複數條導線425-1、...425-n-1、425-n順形的山脊狀堆疊,且其作為字元線WLn、WLn-1、...WL1。複數個山脊狀堆疊包括長條半導體材料412、413、414,其與相同平面中平行的其他長條半導體材料經由延伸412A、413A、414A耦接。在之後顯示的其他實施例中,長條半導體材料在形成階梯結構的延伸處終結。長條半導體材料經由延伸412A、413A、414A是沿著X軸方向,與複數個山脊狀堆疊的長條半導體材料耦接。此外,如以下所示,這些延伸412A、413A、414A係延伸超過陣列的邊緣,且安排成與陣列內的解碼電路連接以選擇平面。這些延伸412A、413A、414A可以在定義複數個山脊狀堆疊的同時或之前被圖案化。在之後顯示的實施例中,具有階梯結構的延伸來終結長條半導體材料,並不需要延伸超過陣列的邊緣。The multi-layer stack is formed on the insulating layer 410, and includes a plurality of straight lines 425-1, 425-n-1, 425-n ridge-like stacks, and as the word lines WLn, WLn-1, . ..WL1. The plurality of ridge-like stacks include elongated semiconductor materials 412, 413, 414 that are coupled to other elongated semiconductor materials in parallel in the same plane via extensions 412A, 413A, 414A. In other embodiments shown later, the elongated semiconductor material terminates at an extension that forms a stepped structure. The elongated semiconductor material is coupled to the plurality of ridge-like stacked elongated semiconductor materials along the X-axis direction via extensions 412A, 413A, 414A. Moreover, as shown below, these extensions 412A, 413A, 414A extend beyond the edges of the array and are arranged to interface with decoding circuitry within the array to select a plane. These extensions 412A, 413A, 414A can be patterned while or before defining a plurality of ridge-like stacks. In the embodiment shown later, the extension of the stepped structure terminates the elongated semiconductor material and does not need to extend beyond the edges of the array.

一層記憶材料415用來自長條半導體材料412-414分隔導線425-1到425-n會在底下更詳細地描述。The layer of memory material 415 is separated from the strips 425-1 through 425-n by strips of semiconductor material 412-414, which are described in more detail below.

例如電晶體450的電晶體形成介於長條半導體材料412、413、414及導線425-1之間。在這些電晶體中,長條半導體材料(例如413)係作為此裝置的通道區域。閘極結構(例如429)是在定義導線425-1到425-n時同時被圖案化。一層矽化物426沿著導線的上表面及閘極結構429之上形成。記憶材料層415可以作為電晶體的閘介電層。這些電晶體作為選擇閘極與解碼電路耦接以沿著陣列中的山脊狀堆疊來選取行。For example, the transistor of transistor 450 is formed between elongated semiconductor materials 412, 413, 414 and conductor 425-1. Among these transistors, a long strip of semiconductor material (e.g., 413) serves as the channel region of the device. The gate structure (e.g., 429) is simultaneously patterned while defining conductors 425-1 through 425-n. A layer of telluride 426 is formed along the upper surface of the wire and over the gate structure 429. The memory material layer 415 can serve as a gate dielectric layer for the transistor. These transistors are coupled as a select gate to the decode circuit to select rows along a ridged stack in the array.

一選擇性的製程步驟包括形成硬式幕罩401-1到401-n於複數條導線之上,及硬式幕罩402和403於閘極結構429之上。此硬式幕罩可以使用相對厚的氧化物或其他可以阻擋離子佈植的材料形成。於硬式幕罩形成之後,可以進行離子佈植以增加長條半導體材料412、413、414及延伸412A、413A、414A中的摻雜濃度,及因此降低沿著長條半導體材料電流路徑上的電阻。藉由使用控制佈植能量,佈植可以導致穿過底長條半導體材料412,及每一個在堆疊中的上方長條半導體材料。An optional process step includes forming hard masks 401-1 through 401-n over the plurality of wires, and hard masks 402 and 403 over gate structure 429. This hard mask can be formed using relatively thick oxides or other materials that block ion implantation. After the hard mask is formed, ion implantation can be performed to increase the doping concentration in the elongated semiconductor material 412, 413, 414 and extensions 412A, 413A, 414A, and thus reduce the resistance along the current path of the elongated semiconductor material. . By using the control implant energy, the implant can result in a through-strip strip of semiconductor material 412, and each of the elongated semiconductor material in the stack.

第18圖是製造第17圖所示的記憶陣列的下一階段之示意圖。在此圖中仍是使用相同的參考標號,且不再加以說明。第18圖所示的結構顯示移除硬式幕罩將複數條導線425-1到425-n及閘極結構429之上的矽化物426裸露出來之後的結果。於一層間介電層(未示)形成於陣列上方之後,介層孔被形成直到閘極結構429的上表面且舉例而言使用鎢的栓塞458、459填充於其中。作為串列選擇線SSL的上方金屬線460n、460n+1被圖案化且與行解碼電路連接。一個三維解碼電路被以圖中的方式建立,使用一字元線、一位元線、及一串列選擇線SSL來存取一選取記憶胞。可參閱標題為"Plane Decoding Method and Device for Three Dimensional Memories"的美國專利第6906940號。Figure 18 is a schematic diagram showing the next stage of manufacturing the memory array shown in Figure 17. The same reference numerals are still used in this figure and will not be described again. The structure shown in Fig. 18 shows the result of removing the hard mask to expose the plurality of wires 425-1 to 425-n and the telluride 426 over the gate structure 429. After an interlevel dielectric layer (not shown) is formed over the array, via holes are formed up to the upper surface of the gate structure 429 and, for example, plugs 458, 459 using tungsten are filled therein. The upper metal lines 460n, 460n+1 as the string selection line SSL are patterned and connected to the row decoding circuit. A three-dimensional decoding circuit is constructed in the manner of a picture, using a word line, a bit line, and a string selection line SSL to access a selected memory cell. See U.S. Patent No. 6,069,940, entitled "Plane Decoding Method and Device for Three Dimensional Memories."

為了程式化一所選取反熔絲型態記憶胞,在此實施例中所選取字元線被偏壓至-7V,未選取字元線可以設定為0V,所選取位元線也可以設定為0V,未選取位元線可以設定為0V,所選取串列選擇線可以設定為-3.3V,而未選取串列選擇線可以設定為0V。為了讀取一所選取記憶胞,在此實施例中所選取字元線被偏壓至-1.5V,未選取字元線可以設定為0V,所選取位元線也可以設定為0V,未選取位元線可以設定為0V,所選取串列選擇線可以設定為-3.3V,而未選取串列選擇線可以設定為0V。In order to program a selected anti-fuse type memory cell, the word line selected in this embodiment is biased to -7V, and the unselected word line can be set to 0V, and the selected bit line can also be set to 0V, the unselected bit line can be set to 0V, the selected string select line can be set to -3.3V, and the unselected string select line can be set to 0V. In order to read a selected memory cell, the word line selected in this embodiment is biased to -1.5V, the unselected word line can be set to 0V, and the selected bit line can also be set to 0V, which is not selected. The bit line can be set to 0V, the selected string select line can be set to -3.3V, and the unselected string select line can be set to 0V.

第19圖提供此記憶胞佈局的上視圖,包括串列選擇線和位元線470-472,其於包括長條半導體材料414及作為字元線的導線425-n的山脊狀堆疊之上。這些字元線延伸至列解碼電路。Figure 19 provides a top view of this memory cell layout, including tandem select lines and bit lines 470-472 over a ridged stack including strips of semiconductor material 414 and wires 425-n as word lines. These word lines extend to the column decoding circuit.

如圖中所示,接觸栓塞(例如458)與閘極結構連接以選取長條半導體材料414至上方的串列選擇線(例如460n)。可以使用一個稱為扭轉佈局,其中閘極結構係以交互堆疊方式顯示於圖中,使得圖案化接觸栓塞458製程的對準邊界可以在沿著行方向上分享,進而減少此山脊狀堆疊佈局的平均間距。這些串列選擇線延伸至行解碼電路。As shown in the figure, a contact plug (e.g., 458) is coupled to the gate structure to select the elongated semiconductor material 414 to the upper tandem select line (e.g., 460n). One may be referred to as a twisted layout in which the gate structures are shown in an alternately stacked manner such that the alignment boundaries of the patterned contact plug 458 process can be shared along the row direction, thereby reducing the average of the ridged stack layout. spacing. These string select lines extend to the row decode circuit.

第19圖也顯示此記憶胞佈局的上視圖中,包括長條半導體材料延伸連接(例如414A)至位元線的部份。如圖中所示,延伸連接414A延伸超過陣列而至位元線。介層孔也是以交錯方式打開以裸露此陣列之每一個平面中的長條半導體材料延伸連接。在此範例中,接點481是由第一平面中的長條半導體材料構成,接點482是由第二平面中的長條半導體材料構成,而接點483是由第三平面中的長條半導體材料構成,以此類推。在形成這些接點時可以使用非關鍵對準具有如圖中所示的較大誤差容忍程度。位元線470、471、472與接點481、482、483連接且平行於串列選擇線延伸至平面解碼電路及感測放大器。在之後所示的實施例中,其具有階梯狀結構終結長條半導體的接點,並不需要延伸超過陣列的邊緣。Figure 19 also shows a top view of the memory cell layout including a portion of the elongated semiconductor material extension connection (e.g., 414A) to the bit line. As shown in the figure, the extension connection 414A extends beyond the array to the bit line. The via holes are also opened in a staggered manner to expose the elongated semiconductor material extension connections in each of the planes of the array. In this example, junction 481 is formed of a long strip of semiconductor material in a first plane, junction 482 is formed of a long strip of semiconductor material in a second plane, and junction 483 is a strip in the third plane. The composition of semiconductor materials, and so on. Non-critical alignments can be used when forming these contacts with a greater degree of error tolerance as shown in the figure. Bit lines 470, 471, 472 are coupled to contacts 481, 482, 483 and extend parallel to the string select lines to the planar decode circuit and the sense amplifier. In the embodiment shown later, it has a stepped structure that terminates the contacts of the elongated semiconductor and does not need to extend beyond the edges of the array.

第20圖顯示不同於第18圖的解碼器佈局之記憶胞的剖面圖,其係具有Y和Z軸於紙面中。在第20圖的實施例中,額外的圖案化步驟用來定義例如是多晶矽的串列選擇線(例如491),陣列佈局的每一個平面與導線(例如425-1)平行。電晶體使用長條半導體材料(例如412)作為通道區域。閘介電層492形成介於串列選擇線491與長條半導體材料412之間。矽化物490可以形成於串列選擇線491之上。串列選擇線491向外延伸如以下所描述的自陣列連接至解碼電路。上方位元線498和499經由穿過此結構的介層孔,與各自山脊狀堆疊中的長條半導體材料412、413、414連接,且於介層孔內形成接觸結構495、502、496和503。Figure 20 shows a cross-sectional view of a memory cell different from the decoder layout of Figure 18 with the Y and Z axes in the plane of the paper. In the embodiment of Fig. 20, an additional patterning step is used to define a tandem select line (e.g., 491) such as a polysilicon, each plane of the array layout being parallel to a wire (e.g., 425-1). The transistor uses a long strip of semiconductor material (e.g., 412) as the channel region. Gate dielectric layer 492 is formed between tandem select line 491 and elongated semiconductor material 412. Telluride 490 can be formed over tandem selection line 491. The tandem select line 491 extends outwardly from the array as described below to the decode circuit. The upper azimuth lines 498 and 499 are connected to the elongated semiconductor material 412, 413, 414 in the respective ridge-like stack via via holes through the structure, and form contact structures 495, 502, 496 and within the via holes. 503.

第21圖顯示第20圖中的解碼器佈局示意圖,如圖中所示,接點(例如502)可以形成介於長條半導體材料(如414)與位元線(如498)之間。接點仍是安排成階梯狀結構使得對準邊界於複數個行中分享。Figure 21 shows a schematic diagram of the decoder layout in Figure 20, as shown in the figure, a contact (e.g., 502) may be formed between a strip of semiconductor material (e.g., 414) and a bit line (e.g., 498). The contacts are still arranged in a stepped structure such that the alignment boundaries are shared in a plurality of rows.

串列選擇線(如491)自陣列向外延伸至上方整體串列選擇線520、521、522處。接觸栓塞510、511、和512於介層孔內形成且延伸至陣列各自平面中的串列選擇線。再次說明在形成此結構佈局時可以使用非關鍵對準邊界(如513、514)。在此範例中,串列選擇線延伸至平面解碼電路。位元線延伸至行解碼電路與感測放大器,其安排成頁面緩衝器結構以允許更寬、平行的讀取及寫入操作。字元線延伸至列解碼電路。A tandem select line (e.g., 491) extends outwardly from the array to the upper overall tandem select lines 520, 521, 522. Contact plugs 510, 511, and 512 are formed in the via holes and extend to the tandem select lines in the respective planes of the array. Again, non-critical alignment boundaries (e.g., 513, 514) can be used in forming this structural layout. In this example, the serial select line extends to the planar decode circuit. The bit lines extend to the row decode circuit and the sense amplifier, which are arranged in a page buffer structure to allow for wider, parallel read and write operations. The word line extends to the column decoding circuit.

第22圖顯示反及閘快閃陣列之剖面圖,顯示長條半導體材料一起連接至一解碼結構,且顯示硬式幕罩及一選擇性佈植步驟。在第22圖中係經過旋轉使其Y和Z軸於紙面中,與第5圖略有不同其是X和Z軸於紙面中。Figure 22 shows a cross-sectional view of the anti-gate flash array showing the long strip of semiconductor material connected together to a decoding structure and showing the hard mask and a selective implantation step. In Fig. 22, it is rotated so that the Y and Z axes are in the plane of the paper, which is slightly different from Fig. 5, which is the X and Z axes in the plane of the paper.

此外,位於山脊狀堆疊中的長條半導體材料之間的絕緣層自圖中移除以顯示更多的細節。In addition, the insulating layer between the elongated semiconductor materials in the ridge-like stack is removed from the figure to show more detail.

多層陣列形成於一絕緣層110之上,其包括複數條導線625-1...、625-n與複數個作為字元線WLn、WLn-1、...WL1之山脊狀堆疊順形。複數個山脊狀堆疊包括長條半導體材料612、613、614,其與相同平面中平行的其他山脊狀堆疊長條半導體材料經由延伸612A、613A、614A耦接。這些長條半導體材料的延伸612A、613A、614A是沿著X軸方向安排,與複數個山脊狀堆疊的長條半導體材料耦接。此外,如以下所示,這些延伸612A、613A、614A係延伸超過陣列的邊緣,且安排成與陣列內的解碼電路連接以選擇平面。這些延伸612A、613A、614A可以在定義複數個山脊狀堆疊的同時或是在之前當替代地長條半導體材料及絕緣層形成時被圖案化。The multilayer array is formed over an insulating layer 110 comprising a plurality of wires 625-1..., 625-n and a plurality of ridge-like stacked ciss as word lines WLn, WLn-1, ... WL1. The plurality of ridge-like stacks include elongated semiconductor materials 612, 613, 614 that are coupled to other ridge-like stacked elongated semiconductor materials in parallel in the same plane via extensions 612A, 613A, 614A. The extensions 612A, 613A, 614A of the elongated semiconductor materials are arranged along the X-axis direction and coupled to a plurality of ridge-like stacked elongated semiconductor materials. Moreover, as shown below, these extensions 612A, 613A, 614A extend beyond the edges of the array and are arranged to interface with decoding circuitry within the array to select a plane. These extensions 612A, 613A, 614A may be patterned while defining a plurality of ridge-like stacks or prior to the formation of alternately elongated semiconductor materials and insulating layers.

在某些實施例中,長條半導體材料延伸612A、613A、614A具有階梯結構的延伸來終結長條半導體材料612、613、614。這些延伸612A、613A、614A可以在定義複數個山脊狀堆疊的同時被圖案化。In some embodiments, the elongated semiconductor material extensions 612A, 613A, 614A have an extension of a stepped structure to terminate the elongated semiconductor material 612, 613, 614. These extensions 612A, 613A, 614A can be patterned while defining a plurality of ridge-like stacks.

一層記憶材料615如同之前所描述的係用來自長條半導體材料612-614分隔導線625-1到625-n。A layer of memory material 615 separates conductors 625-1 through 625-n from strips of semiconductor material 612-614 as previously described.

例如電晶體650的電晶體形成介於長條半導體材料延伸612A、613A、614及導線625-1之間。此外例如電晶體651的電晶體形成長條半導體材料的相對側以控制陣列的區段與共同源極線(未示)的連接。在這些電晶體650、651中,長條半導體材料(例如612)係作為此裝置的通道區域。閘極結構(例如629、649)是在定義導線625-1到625-n時同時被圖案化。此接地選擇線GSL 649可以被安排成沿著列方向,且穿過複數個山脊狀堆疊的長條半導體材料。一層矽化物626沿著導線的上表面及閘極結構629、649之上形成。記憶材料層615可以作為電晶體的閘介電層。這些電晶體650、651作為選擇閘極與解碼電路耦接以沿著陣列中的山脊狀堆疊來選取區段及行。For example, the transistor of transistor 650 is formed between elongated semiconductor material extensions 612A, 613A, 614 and conductor 625-1. Further, a transistor such as transistor 651 forms the opposite side of the elongated semiconductor material to control the connection of the segments of the array to a common source line (not shown). In these transistors 650, 651, a long strip of semiconductor material (e.g., 612) acts as a channel region for the device. The gate structures (e.g., 629, 649) are simultaneously patterned while defining conductors 625-1 through 625-n. This ground selection line GSL 649 can be arranged along the column direction and through a plurality of ridge-like stacked strips of semiconductor material. A layer of germanide 626 is formed over the upper surface of the wire and over the gate structures 629, 649. The memory material layer 615 can serve as a gate dielectric layer for the transistor. These transistors 650, 651 are coupled as a select gate to a decode circuit to select segments and rows along a ridge-like stack in the array.

一選擇性的製程步驟包括形成硬式幕罩601-1到601-n於複數條導線之上、硬式幕罩648於接地選擇線GSL 649之上及硬式幕罩602和603於閘極結構629之上。此硬式幕罩可以使用相對厚的氧化物或其他可以阻擋離子佈植的材料形成。於硬式幕罩形成之後,可以根據所施行的應用進行n型或p型離子佈植600以增加長條半導體材料612~614及延伸612A~614A中的摻雜濃度,及因此降低沿著長條半導體材料電流路徑上的電阻。此外,假如有需要時,所摻雜的雜質與主體長條半導體材料的導電型態相反(如當主體長條半導體材料是p型時則進行n型離子佈植),以沿著長條半導體材料形成摻雜的源/汲極接面。藉由使用控制佈植能量,佈植可以導致穿過底長條半導體材料612,及每一個在堆疊中的上方長條半導體材料。An optional process step includes forming hard masks 601-1 through 601-n over a plurality of wires, hard mask 648 over ground select line GSL 649, and hard masks 602 and 603 at gate structure 629. on. This hard mask can be formed using relatively thick oxides or other materials that block ion implantation. After the hard mask is formed, n-type or p-type ion implantation 600 can be performed depending on the application being performed to increase the doping concentration in the elongated semiconductor materials 612-614 and extensions 612A-614A, and thus reduce the strip along the strip The resistance on the current path of the semiconductor material. In addition, if necessary, the doped impurities are opposite to the conductivity type of the bulk strip semiconductor material (eg, when the bulk strip semiconductor material is p-type, n-type ion implantation is performed) to follow the strip semiconductor The material forms a doped source/drain junction. By using the control implant energy, the implant can result in a through-strip strip of semiconductor material 612, and each of the elongated strips of semiconductor material in the stack.

為了程式化一所選取反及閘快閃SONOS型態記憶胞,在此實施例中所選取字元線被偏壓至+20V,未選取字元線可以設定為+10V,所選取位元線也可以設定為0V,未選取位元線可以設定為0V,所選取串列選擇線可以設定為3.3V,而未選取串列選擇線及接地選擇線GSL可以設定為0V。為了讀取一所選取記憶胞,在此實施例中所選取字元線被偏壓至讀取參考電壓,未選取字元線可以設定為6V,所選取位元線也可以設定為1V,未選取位元線可以設定為0V,所選取串列選擇線可以設定為3.3V,而未選取串列選擇線可以設定為0V。In order to program a selected reverse gate flash SONOS type memory cell, the word line selected in this embodiment is biased to +20V, and the unselected word line can be set to +10V, and the selected bit line is selected. It can also be set to 0V, the unselected bit line can be set to 0V, the selected string selection line can be set to 3.3V, and the unselected string selection line and the ground selection line GSL can be set to 0V. In order to read a selected memory cell, the word line selected in this embodiment is biased to the read reference voltage, the unselected word line can be set to 6V, and the selected bit line can also be set to 1V, The selected bit line can be set to 0V, the selected string selection line can be set to 3.3V, and the unselected string selection line can be set to 0V.

第23圖是製造第22圖所示的記憶陣列的下一階段之示意圖。在此圖中仍是使用相同的參考標號,且不再加以說明。第23圖所示的結構顯示移除硬式幕罩將複數條導線625-1到625-n及閘極結構629和649之上的矽化物626裸露出來之後的結果。於一層間介電層(未示)形成於陣列上方之後,介層孔被形成直到閘極結構629的上表面且舉例而言使用鎢的栓塞665、666填充於其中。此外一金屬共同源極線670形成並與鄰接選擇電晶體651的長條半導體材料之末端連接。上方金屬線665、666被圖案化以經由連接栓塞665、666與串列選擇線閘及連接進而與行解碼電路連接。Fig. 23 is a view showing the next stage of manufacturing the memory array shown in Fig. 22. The same reference numerals are still used in this figure and will not be described again. The structure shown in Fig. 23 shows the result of removing the hard mask to expose the plurality of wires 625-1 to 625-n and the germane 626 over the gate structures 629 and 649. After an interlevel dielectric layer (not shown) is formed over the array, via holes are formed up to the upper surface of the gate structure 629 and, for example, plugs 665, 666 using tungsten are filled therein. Further, a common metal source line 670 is formed and connected to the end of the elongated semiconductor material adjacent to the selection transistor 651. The upper metal lines 665, 666 are patterned to connect to the row decode circuit via the connection plugs 665, 666 and the serial select gates and connections.

第24圖提供此記憶胞佈局的上視圖,包括串列選擇線(如661)和位元線671-673,其於包括長條半導體材料614及作為字元線的導線625-n的山脊狀堆疊之上。這些字元線延伸至列解碼電路。此外,圖中也顯示位於串列選擇線之下的接地選擇線GSL 649,且與字元線平行而延伸至區段解碼器。圖中也顯示位於串列選擇線之下的共同源極線670,且也是與字元線平行。Figure 24 provides a top view of this memory cell layout, including a tandem select line (e.g., 661) and bit lines 671-673, which are ridged including a strip of semiconductor material 614 and a conductor 625-n as a word line. Above the stack. These word lines extend to the column decoding circuit. In addition, the ground select line GSL 649 located below the string select line is also shown and extends parallel to the word line to the sector decoder. Also shown is a common source line 670 located below the string selection line, and is also parallel to the word line.

如圖中所示,接觸栓塞(例如665)與閘極結構連接以選取長條半導體材料614至上方的串列選擇線(例如661)。可以使用一個稱為扭轉佈局,其中閘極結構係以交互堆疊方式顯示於圖中,使得圖案化接觸栓塞665製程的對準邊界(如665A)可以在沿著行方向上分享,進而減少此山脊狀堆疊佈局的平均間距。這些串列選擇線延伸至行解碼電路。As shown in the figure, a contact plug (e.g., 665) is coupled to the gate structure to select the elongated semiconductor material 614 to the upper tandem select line (e.g., 661). A twisted layout can be used in which the gate structures are shown in an alternately stacked manner such that the alignment boundaries of the patterned contact plug 665 process (e.g., 665A) can be shared along the row direction, thereby reducing the ridge shape. The average spacing of the stacked layouts. These string select lines extend to the row decode circuit.

第24圖也顯示此記憶胞佈局的上視圖中,包括長條半導體材料延伸連接(例如614A)至位元線的部份。如圖中所示,延伸連接614A延伸超過陣列而至位元線。介層孔也是以交錯方式打開以裸露此陣列之每一個平面中的長條半導體材料延伸連接。在此範例中,接點681是由到達第一平面中的長條半導體材料構成,接點682是由到達第二平面中的長條半導體材料構成,而接點683是由到達第三平面中的長條半導體材料構成,以此類推。在形成這些接點時可以使用非關鍵對準具有如圖中680處所示的較大誤差容忍程度。位元線670、671、672與接點681、682、683連接且平行於串列選擇線延伸至平面解碼電路及感測放大器。在之後所示的實施例中,其具有階梯狀結構終結長條半導體的接點,並不需要延伸超過陣列的邊緣。Figure 24 also shows a top view of the memory cell layout including a portion of the elongated semiconductor material extension connection (e.g., 614A) to the bit line. As shown in the figure, the extension connection 614A extends beyond the array to the bit line. The via holes are also opened in a staggered manner to expose the elongated semiconductor material extension connections in each of the planes of the array. In this example, the contact 681 is formed of a long strip of semiconductor material that reaches the first plane, the junction 682 is formed of a long strip of semiconductor material that reaches the second plane, and the junction 683 is reached by the third plane. The composition of the long strip of semiconductor material, and so on. Non-critical alignments can be used when forming these contacts with a greater degree of error tolerance as shown at 680 in the figure. Bit lines 670, 671, 672 are coupled to contacts 681, 682, 683 and extend parallel to the string select lines to the planar decode circuit and the sense amplifier. In the embodiment shown later, it has a stepped structure that terminates the contacts of the elongated semiconductor and does not need to extend beyond the edges of the array.

第25圖顯示Y和Z軸於紙面中的剖面圖,其顯示分別將延伸連接612A~614A與接觸栓塞681、682、683連接的結構。上方位元線670~672與連接栓塞連接。接觸栓塞681~683的對準邊界680a、680b顯示此步驟的圖案化並非很重要的,其不會影響陣列的密度。顯示於圖中的其他參考標號與之前所使用的相同,且不會再描述這些結構。Fig. 25 is a cross-sectional view showing the Y and Z axes in the plane of the paper, showing the structure in which the extension joints 612A to 614A are connected to the contact plugs 681, 682, and 683, respectively. The upper azimuth lines 670~672 are connected to the connecting plug. The alignment boundaries 680a, 680b of the contact plugs 681-683 show that the patterning of this step is not critical and does not affect the density of the array. The other reference numerals shown in the figures are the same as those previously used, and these structures will not be described again.

第26圖顯示反及閘快閃陣列實施例之剖面圖,在圖中係使Y和Z軸於紙面中,與第23圖略有不同。第26圖的實施例中,使用一個額外的圖案化步驟以定義使用多晶矽的串列選擇線(例如691)和接地串列選擇線(例如649),在其中陣列的每一個平面與導線(如625-1)平行。電晶體700和702由利用作為通道區域的長條半導體材料使用線691和649的結果而形成。一閘介電層692施加在介於串列選擇線691與長條半導體材料612之間以及接地選擇線649與長條半導體材料612之間。一層矽化物690形成於串列選擇線691與接地選擇線649之上。串列選擇線691如同以下描述的自陣列向外延伸以與解碼電路連接。上方位元線698、打開通過結構的介層孔在各自的山脊狀堆疊中與長條半導體材料612、613、614連接,且形成接觸結構695、702、693、703於介層孔之內。Figure 26 is a cross-sectional view showing an embodiment of the anti-gate flash array, in which the Y and Z axes are in the plane of the paper, which is slightly different from Fig. 23. In the embodiment of Figure 26, an additional patterning step is used to define a tandem select line (e.g., 691) and a ground tandem select line (e.g., 649) using polysilicon, in which each plane of the array is associated with a wire (e.g., 625-1) Parallel. The transistors 700 and 702 are formed as a result of the use of lines 691 and 649 using elongated semiconductor materials as channel regions. A gate dielectric layer 692 is applied between the string select line 691 and the elongated semiconductor material 612 and between the ground select line 649 and the elongated semiconductor material 612. A layer of germanide 690 is formed over series select line 691 and ground select line 649. The string select line 691 extends outward from the array as described below to interface with the decode circuitry. The upper orientation element lines 698, the via holes that open through the structure are connected to the elongated semiconductor material 612, 613, 614 in respective ridge-like stacks, and the contact structures 695, 702, 693, 703 are formed within the via holes.

第27圖顯示第26圖中的解碼器佈局示意圖,如圖中所示,接點(例如705)可以形成介於長條半導體材料(如614)與位元線(如698)之間。接點仍是安排成階梯狀結構使得對準邊界於複數個行中分享。Figure 27 shows a schematic diagram of the decoder layout in Figure 26, as shown in the figure, a junction (e.g., 705) may be formed between a strip of semiconductor material (e.g., 614) and a bit line (e.g., 698). The contacts are still arranged in a stepped structure such that the alignment boundaries are shared in a plurality of rows.

串列選擇線(如649)自陣列向外延伸至上方整體串列選擇線720、721、722處。接觸栓塞710、711、和712於介層孔內形成且延伸至陣列各自平面中的串列選擇線再至上方整體串列選擇線720、721、722。再次說明在形成此結構佈局時可以使用非關鍵對準邊界(如713、714)。在此範例中,串列選擇線延伸至平面解碼電路。在之後顯示的某些實施例中,長條半導體材料延伸具有階梯結構的延伸來終結長條半導體材料612,並不需要延伸超過陣列的邊緣。位元線延伸至行解碼電路與感測放大器,其安排成頁面緩衝器結構以允許更寬、平行的讀取及寫入操作。字元線延伸至列解碼電路。A tandem select line (e.g., 649) extends outwardly from the array to the upper overall tandem select lines 720, 721, 722. Contact plugs 710, 711, and 712 are formed in the via holes and extend to the tandem select lines in the respective planes of the array to the upper overall tandem select lines 720, 721, 722. Again, non-critical alignment boundaries (e.g., 713, 714) can be used in forming this structural layout. In this example, the serial select line extends to the planar decode circuit. In certain embodiments shown later, the elongated semiconductor material extends with an extension of the stepped structure to terminate the elongated semiconductor material 612 and does not need to extend beyond the edges of the array. The bit lines extend to the row decode circuit and the sense amplifier, which are arranged in a page buffer structure to allow for wider, parallel read and write operations. The word line extends to the column decoding circuit.

此外,圖中也顯示位於位元線之下的接地選擇線GSL649,且與字元線平行而延伸至區段解碼器。圖中也顯示位於位元線之下的共同源極線670,且也是與字元線(例如625n)平行,而至接觸栓塞680級上至陣列上方的共同源極線725。In addition, the ground selection line GSL649 below the bit line is also shown and extends parallel to the word line to the sector decoder. Also shown is a common source line 670 below the bit line and also parallel to the word line (e.g., 625n) to the common source line 725 above the contact plug 680 level above the array.

第28圖顯示根據本發明一實施例之積體電路的簡化示意圖。其中積體電路875包括使用具有此處所描述的三維可程式電阻唯讀記憶體(RRAM)陣列860於一半導體基板之上。一列解碼器861與沿著記憶陣列860列方向安排之複數條字元線862耦接且電性溝通。行解碼器863與沿著記憶陣列860行方向安排之複數條位元線864(或之前所描述的串列選擇線)電性溝通以對自陣列860的記憶胞進行讀取及程式化資料操作。一平面解碼器858與此陣列860平面上的之前所描述的串列選擇線859耦接。位址係由匯流排865提供給行解碼器863、列解碼器861與平面解碼器858。方塊866中的感測放大器與資料輸入結構經由資料匯流排867與行解碼器863耦接。資料由積體電路875上的輸入/輸出埠提供給資料輸入線871,或者由積體電路875其他內部/外部的資料源,輸入至方塊866中的資料輸入結構。其他電路874係包含於積體電路875之內,例如泛用目的處理器或特殊目的應用電路,或是模組組合以提供由可程式電阻記憶胞陣列所支援的系統單晶片功能。資料由方塊866中的感測放大器,經由資料輸出線872,提供至積體電路875,或提供至積體電路875內部/外部的其他資料終端。Figure 28 is a simplified schematic diagram of an integrated circuit in accordance with an embodiment of the present invention. The integrated circuit 875 includes the use of a three-dimensional programmable resistive read only memory (RRAM) array 860 as described herein over a semiconductor substrate. A column of decoders 861 is coupled to and electrically coupled to a plurality of word lines 862 arranged along the direction of the column of memory array 860. Row decoder 863 is in electrical communication with a plurality of bit lines 864 (or string select lines as previously described) arranged along the row direction of memory array 860 to read and program data from memory cells of array 860. . A planar decoder 858 is coupled to the previously described string select line 859 on the array 860 plane. The address is provided by bus 865 to row decoder 863, column decoder 861 and plane decoder 858. The sense amplifier and data input structure in block 866 is coupled to row decoder 863 via data bus 867. The data is provided to the data input line 871 by the input/output ports on the integrated circuit 875, or to other data sources of the integrated circuit 875, to the data input structure in block 866. Other circuits 874 are included within integrated circuit 875, such as a general purpose processor or special purpose application circuit, or a combination of modules to provide system single chip functionality supported by a programmable resistive memory cell array. The data is provided by sense amplifiers in block 866, via data output line 872, to integrated circuit 875, or to other data terminals internal/external to integrated circuit 875.

在本實施例中所使用的控制器係使用了偏壓調整狀態機構869,並控制了偏壓調整供應電壓868的應用,例如讀取和程式化電壓。該控制器可利用特殊目的邏輯電路而應用,如熟習該項技藝者所熟知。在替代實施例中,該控制器包括了通用目的處理器,其可使於同一積體電路,以執行一電腦程式而控制裝置的操作。在又一實施例中,該控制器係由特殊目的邏輯電路與通用目的處理器組合而成。The controller used in this embodiment uses a bias adjustment state mechanism 869 and controls the application of the bias adjustment supply voltage 868, such as read and program voltage. The controller can be utilized with special purpose logic circuitry as is well known to those skilled in the art. In an alternate embodiment, the controller includes a general purpose processor that can be used in the same integrated circuit to execute a computer program to control the operation of the device. In yet another embodiment, the controller is a combination of special purpose logic circuitry and a general purpose processor.

第29圖顯示根據本發明一實施例之積體電路的簡化示意圖。其中積體電路975包括使用具有此處所描述的三維三維反及閘快閃記憶體陣列陣列960於一半導體基板之上。一列解碼器961與沿著記憶陣列960列方向安排之複數條字元線962耦接且電性溝通。行解碼器963與沿著記憶陣列960行方向安排之複數條位元線964(或之前所描述的串列選擇線)電性溝通以對自陣列960的記憶胞進行讀取及程式化資料操作。一平面解碼器958與此陣列960平面上的之前所描述的串列選擇線959耦接。位址係由匯流排965提供給行解碼器963、列解碼器961與平面解碼器958。方塊966中的感測放大器與資料輸入結構經由資料匯流排967與行解碼器963耦接。資料由積體電路975上的輸入/輸出埠提供給資料輸入線971,或者由積體電路975其他內部/外部的資料源,輸入至方塊966中的資料輸入結構。在此例示實施例中,其他電路974係包含於積體電路975之內,例如泛用目的處理器或特殊目的應用電路,或是模組組合以提供由反及閘快閃記憶體陣列所支援的系統單晶片功能。資料由方塊966中的感測放大器,經由資料輸出線972,提供至積體電路975,或提供至積體電路975內部/外部的其他資料終端。Figure 29 is a simplified schematic diagram of an integrated circuit in accordance with an embodiment of the present invention. The integrated circuit 975 includes the use of a three-dimensional three-dimensional inverse gate flash memory array array 960 as described herein over a semiconductor substrate. A column of decoders 961 is coupled to and electrically coupled to a plurality of word lines 962 arranged along the direction of the column of memory arrays 960. Row decoder 963 is in electrical communication with a plurality of bit lines 964 (or string select lines as previously described) arranged along the row direction of memory array 960 to read and program data from memory cells of array 960. . A planar decoder 958 is coupled to the previously described string select line 959 on the array 960 plane. The address is provided by bus 965 to row decoder 963, column decoder 961 and plane decoder 958. The sense amplifier and data input structure in block 966 is coupled to row decoder 963 via data bus 967. The data is supplied to the data input line 971 by the input/output port on the integrated circuit 975, or is input to the data input structure in block 966 by other internal/external data sources of the integrated circuit 975. In this exemplary embodiment, other circuits 974 are included in the integrated circuit 975, such as a general purpose processor or a special purpose application circuit, or a combination of modules to provide support by the anti-gate flash memory array. System single chip function. The data is provided by the sense amplifier in block 966, via the data output line 972, to the integrated circuit 975, or to other data terminals internal/external to the integrated circuit 975.

在本實施例中所使用的控制器係使用了偏壓調整狀態機構969,並控制了偏壓調整供應電壓968的應用,例如讀取、程式化、抹除、抹除驗證、以及程式化驗證電壓。該控制器可利用特殊目的邏輯電路而應用,如熟習該項技藝者所熟知。在替代實施例中,該控制器包括了通用目的處理器,其可使於同一積體電路,以執行一電腦程式而控制裝置的操作。在又一實施例中,該控制器係由特殊目的邏輯電路與通用目的處理器組合而成。The controller used in this embodiment uses a bias adjustment state mechanism 969 and controls the application of the bias adjustment supply voltage 968, such as reading, programming, erasing, erasing verification, and stylized verification. Voltage. The controller can be utilized with special purpose logic circuitry as is well known to those skilled in the art. In an alternate embodiment, the controller includes a general purpose processor that can be used in the same integrated circuit to execute a computer program to control the operation of the device. In yet another embodiment, the controller is a combination of special purpose logic circuitry and a general purpose processor.

第30圖為8層垂直通道薄膜電晶體能隙工程多晶矽-氧化矽-氮化矽-氧化矽-氧化矽(BE-SONOS)電荷捕捉反及閘裝置一部份之穿隧電子顯微鏡的剖面圖,其係以成第8圖及第23圖的方式被製造、測試及安排解碼。此裝置係利用75奈米的半間距形成。其通道為大約18奈米厚的n型多晶矽。沒有進行額外的接面佈植而形成無接面結構。在半導體長條間用來隔離通道的絕緣材料是在Z軸方向,且其是厚度約為40奈米的氧化矽。所提供的閘極為P+多晶矽線。此串列選擇及接地選擇裝置具有較記憶胞更長的通道長度。此測試裝置具有32個字元線、無接面的反及閘串列。因為形成所示結構所使用的溝渠蝕刻具有傾斜的形狀,在溝渠的底部具有距寬的矽線,而且在細線間的絕緣材料距多晶矽被蝕刻得更多,所以第30圖中下方細線的寬度係比上方細線的寬度還寬。Figure 30 is a cross-sectional view of a tunneling electron microscope of a portion of a 8-layer vertical channel thin film transistor energy gap engineering polycrystalline germanium-yttria-yttria-yttria-yttria-yttria (BE-SONOS) charge trapping gate device. It is manufactured, tested and arranged for decoding in the manner of Figures 8 and 23. This device was formed using a half pitch of 75 nm. The channel is an approximately 180 nm thick n-type polysilicon. No joints were implanted to form a jointless structure. The insulating material used to isolate the channels between the semiconductor strips is in the Z-axis direction and is a tantalum oxide having a thickness of about 40 nm. The gate provided is extremely P+ polysilicon. This serial selection and ground selection device has a longer channel length than the memory cell. The test device has 32 word lines, no junctions, and gate series. Since the trench etch used to form the structure shown has an inclined shape, a wide ridge line is formed at the bottom of the trench, and the insulating material between the thin lines is etched more from the polysilicon, so the width of the lower thin line in Fig. 30 It is wider than the width of the upper thin line.

可以使用正負勒-諾德漢電子穿隧對此裝置進行程式化。此實施例係使用自我壓升之遞增步進脈衝程式化(ISSP)操作。所選取記憶胞的程式化偏壓可以搭配第8圖理解,且也會討論相鄰記憶胞的干擾。為了程式化在BLn、SSLn和WLn的記憶胞A(74),一程式化電位施加至WLn,SSLn設定為Vcc(約3.3V),且位元線BLn設定為約0V。GSL也設定為約0V。WLn-1和WLn+1(以及此串列中的其他字元線)被設定為導通電壓。SSLn-1和SSLn+1(以及此立方體中的其他串列選擇線)被設定為約0V。其他位元線,例如位元線BL0 ,被設定為約3.3V以抑制干擾。GSL也設定為約0V。一個遞增步進脈衝程式化(ISSP)程序包括施加範圍介於14V到20V的遞增步進程式化脈衝至字元線。施加約10V的導通電壓至其他字元線。This device can be programmed using positive and negative Le-Nordheim electron tunneling. This embodiment uses an incremental step-up pulse stylization (ISSP) operation of self-pressurization. The stylized bias of the selected memory cell can be understood in conjunction with Figure 8, and the interference of adjacent memory cells will also be discussed. To program memory cells A (74) at BLn, SSLn, and WLn, a stylized potential is applied to WLn, SSLn is set to Vcc (about 3.3V), and bit line BLn is set to about 0V. GSL is also set to about 0V. WLn-1 and WLn+1 (and other word lines in this series) are set to the turn-on voltage. SSLn-1 and SSLn+1 (and other serial select lines in this cube) are set to approximately 0V. Other bit lines, such as bit line BL 0 , are set to be about 3.3V to suppress interference. GSL is also set to about 0V. An incremental step-pulse stylization (ISSP) program involves the application of incremental step-programmed pulses to word lines ranging from 14V to 20V. A turn-on voltage of about 10 V is applied to the other word lines.

以下描述此程式化偏壓對相鄰記憶胞的干擾,分別對在BLn、SSLn+1(在相同字元線相同層中的相鄰山脊)和WLn的記憶胞B(77),對在BL0、SSLn(在相同字元線不同層中的相同山脊)和WLn的記憶胞C,對在BL0、SSLn+1(在相同字元線不同層中的相鄰山脊)和WLn的記憶胞D,對在BLn、SSLn和WLn-1(在相鄰字元線相同層中的相同山脊)的記憶胞E(73)。The following describes the interference of this stylized bias to adjacent memory cells, respectively, for BLn, SSLn+1 (adjacent ridges in the same layer of the same word line) and memory cell B (77) of WLn, for BL0 , SSLn (the same ridge in different layers of the same word line) and memory cell C of WLn, for BL0, SSLn+1 (adjacent ridges in different layers of the same word line) and memory cell D of WLn, Memory cell E (73) for BLn, SSLn, and WLn-1 (the same ridge in the same layer of adjacent word lines).

記憶胞B的閘極通過WLn接收程式化電位,而其通道是浮接的,其導致自我升壓。因此,程式化干擾被避免。The gate of memory cell B receives the stylized potential through WLn, and its channel is floating, which causes self-boosting. Therefore, stylized interference is avoided.

記憶胞C的閘極通過WLn接收程式化電位,而其通道是浮接的,其導致自我升壓。因此,程式化干擾被避免。然而,對相鄰的平面而言,干涉仍可以因為記憶胞A中電壓改變所誘發的邊緣電場而發生。因此,介於平面間的隔離應該足夠抑制Z方向的干涉。模擬結果建議平面間的絕緣材料厚度應設定為至少30奈米,且最好是40奈米或更多以抑制Z方向干涉導致的干擾。The gate of memory cell C receives the stylized potential through WLn, and its channel is floating, which causes self-boosting. Therefore, stylized interference is avoided. However, for adjacent planes, the interference can still occur due to the fringing electric field induced by the voltage change in the memory cell A. Therefore, the separation between the planes should be sufficient to suppress the interference in the Z direction. The simulation results suggest that the thickness of the insulating material between the planes should be set to at least 30 nm, and preferably 40 nm or more to suppress interference caused by interference in the Z direction.

記憶胞D的閘極通過WLn接收程式化電位,而其通道是浮接的,其導致自我升壓。因此,程式化干擾被避免。The gate of memory cell D receives the stylized potential through WLn, while its channel is floating, which causes self-boosting. Therefore, stylized interference is avoided.

記憶胞E的閘極通過WLn-1接收導通電壓,而其通道經由反及閘串列是與約0V的BLn耦接。此程式化的導通電壓應該是在10V數量級以抑制此記憶胞的干擾。The gate of the memory cell E receives the turn-on voltage through WLn-1, and its channel is coupled to the BLn of about 0V via the anti-gate string. This stylized turn-on voltage should be on the order of 10V to suppress this memory cell interference.

此裝置可以使用負閘及電壓的負勒-諾德漢電洞穿隧進行抹除。施加範圍介於-16到-12V的抹除電壓,所選取字元線可以設定接收此抹除電壓,而此串列中的其他字元線接收導通電壓且所選取位元線可以設定為約0V。This device can be erased using a negative gate and a voltage negative-Nordheim tunnel. Applying an erase voltage ranging from -16 to -12V, the selected word line can be set to receive the erase voltage, and the other word lines in the series receive the turn-on voltage and the selected bit line can be set to about 0V.

此處所描述的三維埋藏通道垂直閘極之反及閘陣列適合微縮至很小的尺寸,因為通道寬度大部分是與長條半導體材料的厚度而不是其寬度相關。間距的限制則因此是由沈積電荷捕捉結構及填充字元線所需的溝渠寬度,及堆疊寬度可達成之最小特徵尺寸來限制。更進一步而言,此結構可以用較少的幕罩步驟來製造,因而大幅地減少了每個記憶胞的成本。The inverse of the vertical gate of the three-dimensional buried channel described herein and the gate array are suitable for miniaturization to a small size because the channel width is mostly related to the thickness of the elongated semiconductor material rather than its width. The spacing is thus limited by the thickness of the trench required to deposit the charge trapping structure and fill the word line, and the minimum feature size achievable by the stack width. Furthermore, this structure can be fabricated with fewer mask steps, thus greatly reducing the cost per memory cell.

第31圖顯示可以支持三維垂直閘極之反及閘快閃或是其他技術之一個非常有效率陣列解碼及記憶架構設計的佈局示意圖。如第31圖所示,其佈局圖省略了(與第24圖相較)位元線,其是於山脊狀堆疊及串列選擇金屬線之上。此字元線延伸至列解碼電路。此外接地選擇線649於串列選擇線之下,且平行於字元線延伸至一區段解碼器。一金屬共同源極線670延伸於串列選擇線之下,且平行於字元線。Figure 31 shows a layout diagram that supports three-dimensional vertical gate reversal and gate flash or a very efficient array decoding and memory architecture design for other techniques. As shown in Fig. 31, the layout diagram omits (compared with Fig. 24) bit lines which are above the ridge-like stack and the tandem selection metal lines. This character line extends to the column decoding circuit. In addition, the ground select line 649 is below the tandem select line and extends parallel to the word line to a sector decoder. A metal common source line 670 extends below the string select line and is parallel to the word line.

如圖中所示,接觸栓塞(如665)與閘極結構連接以選取長條半導體材料614至與此山脊狀堆疊平行的上方串列選擇線區段。係使用一種稱為扭轉狀佈局,其中閘極結構是安排成圖中所式的階梯狀使得圖案化導電栓塞665時對準邊界於複數個列中分享以減少此山脊狀堆疊於此佈局中的平均間距。此串列選擇線區段沿著山脊狀堆疊延伸直到交錯終點為止。這些終點可以例如是交錯地排列,使得最底端的串列選擇線區段到達最右側的字元線的上方區域,下一個串列選擇線區段到達最右側第二條的字元線的上方區域,再下一個串列選擇線區段到達最右側第三條的字元線的上方區域,以此類推。接點放置於串列選擇線區段交錯的端點以與上方水平方向的串列選擇線連接,其會與字元線平行而延伸至串列選擇解碼電路,其可以放置在具有字元線解碼電路的佈局之列解碼區域中。此串列選擇線的間距係大於字元線的間距,如此一範例佈局的每串列立方體中可以具有32條字元線(加上一接地選擇線),及16個8層深的山脊狀堆疊。結果是在列解碼區域中使用16條水平的串列選擇線與32條字元線。8條位元線與此16個山脊狀堆疊之上的8個通道耦接。如此字元線被解碼來選取列,串列選擇線被解碼來選取行,而位元線破解碼來選取平面。這提供了一個具有32x16x8記憶胞的立方結構。當然其他的字元線、串列選擇線及位元線的組合也可以使用。也可以加上假字元線,例如每個串列中有兩條假字元線。As shown, a contact plug (e.g., 665) is coupled to the gate structure to select the elongated semiconductor material 614 to an upper series of select line segments that are parallel to the ridge-like stack. A type of twisted layout is used in which the gate structure is arranged in a stepped manner as shown in the figure such that the patterned conductive plugs 665 are aligned in a plurality of columns to reduce the ridge stack in this layout. Average spacing. This series of select line segments extends along the ridged stack until the end of the stagger. These end points may, for example, be staggered such that the bottommost tandem select line segment reaches the upper region of the rightmost character line and the next tandem select line segment reaches above the rightmost second strip of character lines. The area, the next string selection line segment reaches the upper area of the third rightmost character line, and so on. The contacts are placed at the end of the staggered line segment interleaving to be connected to the upper horizontal tandem select line, which extends parallel to the word line to the tandem select decoding circuit, which can be placed with the word line The layout of the decoding circuit is in the column decoding area. The spacing of the string selection lines is greater than the spacing of the word lines. In this example layout, each column of cubes can have 32 word lines (plus a ground selection line) and 16 8-layer deep ridges. Stacking. The result is the use of 16 horizontal string select lines and 32 word line lines in the column decode area. Eight bit lines are coupled to eight of the 16 ridge-shaped stacks. Such a word line is decoded to select a column, the string selection line is decoded to select a row, and the bit line is decoded to select a plane. This provides a cubic structure with 32x16x8 memory cells. Of course, other combinations of word lines, string selection lines, and bit lines can also be used. It is also possible to add a dummy word line, for example two dummy word lines in each string.

第31圖顯示標示為"位元線步進接觸結構"的方塊,其會如以下描述般實施,以提供平面解碼及將所選取平面與感測放大器耦接。介層孔以交錯或是階梯狀方式打開以裸露每一個陣列平面中的長條半導體材料延伸。再次說明在形成此接觸結構佈局時可以使用具有相對較大容忍值的非關鍵對準邊界。Figure 31 shows a block labeled "Bitline Step Contact Structure" which is implemented as described below to provide planar decoding and to couple the selected plane to the sense amplifier. The via holes are opened in a staggered or stepped manner to expose the elongated semiconductor material in each of the array planes. Again, non-critical alignment boundaries with relatively large tolerance values can be used in forming this contact structure layout.

此處所示之陣列佈局可以利用鏡像對稱方式重複,且相鄰的立方體在階梯狀位元線端分享接觸,且相鄰的立方體在接地選擇線端分享共同源極線。The array layout shown here can be repeated using mirror symmetry, with adjacent cubes sharing contact at the end of the stepped bit line, and adjacent cubes sharing a common source line at the ground select line end.

第32圖顯示替代實施例之具有階梯狀結構終結位元線的記憶陣列之剖面圖(與第23圖相較)。在此圖中仍是使用相同的參考標號,且不再加以說明。第23圖所示的結構顯示移除硬式幕罩將複數條導線625-1到625-n及閘極結構629和649之上的矽化物626裸露出來之後的結果。於一層間介電層(未示)形成於陣列上方之後,介層孔被形成直到閘極結構629的上表面且舉例而言使用鎢的栓塞665、666填充於其中。此外一金屬共同源極線670形成並與鄰接選擇電晶體651的長條半導體材料之末端連接。Figure 32 is a cross-sectional view of an alternative embodiment of a memory array having a stepped structure termination bit line (compared to Figure 23). The same reference numerals are still used in this figure and will not be described again. The structure shown in Fig. 23 shows the result of removing the hard mask to expose the plurality of wires 625-1 to 625-n and the germane 626 over the gate structures 629 and 649. After an interlevel dielectric layer (not shown) is formed over the array, via holes are formed up to the upper surface of the gate structure 629 and, for example, plugs 665, 666 using tungsten are filled therein. Further, a common metal source line 670 is formed and connected to the end of the elongated semiconductor material adjacent to the selection transistor 651.

上方金屬線665、666被圖案化以經由連接栓塞665、666與串列選擇線閘及連接進而與行解碼電路連接。在此圖式中,並未顯示扭轉閘極佈局,但最好仍是使用。The upper metal lines 665, 666 are patterned to connect to the row decode circuit via the connection plugs 665, 666 and the serial select gates and connections. In this figure, the twisted gate layout is not shown, but it is still best to use it.

長條半導體材料延伸612A、613A、614A構成終結長條半導體材料612、613、614的階梯狀結構。這些長條半導體材料的延伸612A、613A、614A可以與複數個山脊狀堆疊定義時一起被圖案化。The elongated semiconductor material extensions 612A, 613A, 614A form a stepped structure that terminates the elongated semiconductor materials 612, 613, 614. The extensions 612A, 613A, 614A of these elongated semiconductor materials can be patterned along with the definition of a plurality of ridge-like stacks.

第33圖顯示另一替代實施例之具有階梯狀結構終結位元線,且具有交錯接觸栓塞與串列選擇線連接的記憶陣列之剖面圖(與第32圖相較)。Figure 33 shows a cross-sectional view of a memory array having a stepped structure termination bit line and having a staggered contact plug and a string select line connection (compared to Figure 32).

上方金屬線661和662被圖案化以經由連接栓塞665、666與串列選擇線閘及連接,且與行解碼電路連接。在此圖式中,顯示扭轉閘極佈局。,但最好仍是使用。閘極結構以圖中所示的交錯方式安排使得在形成此導電接觸栓塞圖案化製程時可以沿著許多列接觸被分享,而減少此山脊狀堆疊佈局中的平均間距。The upper metal lines 661 and 662 are patterned to select and connect the line and via the connection plugs 665, 666 and are coupled to the row decode circuit. In this figure, the twist gate layout is shown. But it's better still to use. The gate structures are arranged in a staggered manner as shown in the figures such that they can be shared along a plurality of column contacts during formation of the conductive contact plug patterning process, reducing the average spacing in this ridge-like stack layout.

第34圖是製造第33圖所示的記憶陣列的下一階段之示意圖,其中位元線接觸與此階梯狀結構的不同階連接(與第33圖相較)。Figure 34 is a schematic diagram of the next stage of fabricating the memory array shown in Figure 33, in which the bit line contacts are connected to different steps of the stepped structure (as compared to Figure 33).

如圖中所示,串列選擇線區段與此山脊狀堆疊平行,其以交錯的方式到達接觸栓塞以與上方的串列選擇線連接,如同第31圖中所述,此串列選擇線係與此山脊狀堆疊垂直,且與字元線平行。圖中也顯示位元線,其是在串列選擇線上方的更高金屬層。As shown in the figure, the tandem select line segments are parallel to the ridge-like stack, which arrive at the contact plugs in a staggered manner to connect with the upper tandem select line, as described in FIG. 31, the tandem select line It is perpendicular to this ridge-like stack and parallel to the word line. The bit line is also shown in the figure, which is the higher metal layer above the tandem selection line.

第35圖是顯示實施第31和32圖中所描述之反及閘快閃裝置的電路示意圖。顯示出不同技術節點之詳細的佈局和設計平面圖。此方案對於超過128GB和兆位元的三維反及閘快閃裝置是非常有效率及降低成本之設計。Figure 35 is a circuit diagram showing the implementation of the anti-gate flash device described in Figures 31 and 32. Shows detailed layout and design plans for different technology nodes. This solution is very efficient and cost-effective for 3D anti-gate flash devices over 128GB and megabits.

第36圖顯示一種可能的兩陣列實施例的平面圖。Figure 36 shows a plan view of one possible two array embodiment.

一實施例中具有8GB密度(等於64G位元或是64Gb):其細節如下:字元線與DIFF(串列選擇線裝置)兩者中,設計準則的半間距為65奈米。具有8層記憶層的三維VGNAND。In one embodiment there is a density of 8 GB (equal to 64 Gbits or 64 Gb): the details are as follows: In both the word line and the DIFF (serial selection line device), the half-pitch of the design criteria is 65 nm. A three-dimensional VGNAND with an 8-layer memory layer.

位元線(第三金屬層)間距等於2xDIFF間距=260奈米。The bit line (third metal layer) pitch is equal to 2 x DIFF pitch = 260 nm.

串列選擇線(第二金屬層)間距等於2xWL間距=260奈米。The tandem selection line (second metal layer) pitch is equal to 2 x WL pitch = 260 nm.

密度是8Gb(8層記憶層,多階記憶胞(2位元/記憶胞))Density is 8Gb (8-layer memory layer, multi-level memory cell (2-bit/memory cell))

頁面尺寸是4kB(2位元/記憶胞),區塊尺寸是2MB=32*16頁面,平面尺寸是4GB(2000個區塊)The page size is 4kB (2-bit/memory cell), the block size is 2MB=32*16 pages, and the plane size is 4GB (2000 blocks)

晶粒尺寸~150平方毫米(陣列=107平方毫米)Grain size ~150 mm 2 (array = 107 mm 2 )

另一實施例中具有64GB密度(等於512G位元或是512Gb):其細節如下:字元線與DIFF(串列選擇線裝置)兩者中,設計準則的半間距為32奈米。具有16層記憶層的三維VGNAND。In another embodiment, there is a 64GB density (equal to 512G bits or 512Gb): the details are as follows: in both the word line and the DIFF (serial selection line device), the half-pitch of the design criteria is 32 nm. A three-dimensional VGNAND with a 16-layer memory layer.

位元線(第三金屬層)間距等於2xDIFF間距=128奈米。The bit line (third metal layer) pitch is equal to 2 x DIFF pitch = 128 nm.

串列選擇線(第二金屬層)間距等於2xWL間距=128奈米。The tandem selection line (second metal layer) pitch is equal to 2 x WL pitch = 128 nm.

密度是512Gb(8層記憶層,多階記憶胞(2位元/記憶胞))Density is 512Gb (8-layer memory layer, multi-level memory cell (2-bit/memory cell))

頁面尺寸是8kB(2位元/記憶胞),區塊尺寸是16MB=64*32頁面,平面尺寸是32GB(2000個區塊)The page size is 8kB (2-bit/memory cell), the block size is 16MB=64*32 pages, and the plane size is 32GB (2000 blocks)

晶粒尺寸~140平方毫米(陣列=97平方毫米)Grain size ~140 mm 2 (array = 97 mm 2 )

因為額外的串列選擇線,此XDEC(列解碼)面積為傳統多階記憶胞反及閘的1.5倍。XDEC(列解碼)可以位於一側或兩側均可。Because of the extra string selection line, this XDEC (column decoding) area is 1.5 times that of the conventional multi-level memory cell. XDEC (column decoding) can be located on one side or both sides.

其他的微縮條件列於以下,其具有2位元/記憶胞的操作:具有8層記憶層,128Gb具有45奈米的4F2 ;256Gb具有32奈米的4F2 ;256Gb具有25奈米的5.1F2 ;(X為32奈米半間距,Y為25奈米半間距)Other micro-shrink conditions are listed below, which have a 2-bit/memory cell operation: with 8 memory layers, 128 Gb with 45 nm 4F 2 ; 256 Gb with 32 nm 4F 2 ; 256 Gb with 25 nm 5.1 F 2 ; (X is 32 nm half pitch, Y is 25 nm half pitch)

具有16層記憶層,512Gb具有32奈米的4F2 或是25奈米的5.1F2 ;具有32層記憶層,1Tb具有42奈米的4F2 或是25奈米的5.1F2 ;在其他的實施例中,可以設計為多平面的記憶庫以適用於其他不同的技術節點。Has 16 layers of memory, 512Gb with 32nm 4F 2 or 25nm 5.1F 2 ; 32 layers of memory, 1Tb with 42nm 4F 2 or 25nm 5.1F 2 ; In an embodiment, it can be designed as a multi-plane memory for other different technology nodes.

記憶層的數目並不限於8、16或32。其他的實施例中可以具有其他數目,例如其他的2倍數或是例如12的半節點其是介於8和16之間的半節點。The number of memory layers is not limited to 8, 16, or 32. Other embodiments may have other numbers, such as other 2x or a half node such as 12, which is a half node between 8 and 16.

本發明之較佳實施例與範例詳細揭露如上,惟應瞭解為上述範例僅作為範例,非用以限制專利之範圍。就熟知技藝之人而言,自可輕易依據下列申請專利範圍對相關技術進行修改與組合。The preferred embodiments and examples of the present invention are disclosed in detail above, but it should be understood that the above examples are merely exemplary and are not intended to limit the scope of the patent. For those skilled in the art, the related art can be modified and combined easily according to the scope of the following patent application.

10、110...絕緣層10, 110. . . Insulation

11~14、111~114...長條半導體材料11~14, 111~114. . . Long strip of semiconductor material

15、115...記憶材料15, 115. . . Memory material

16、17、116、117...導線16, 17, 116, 117. . . wire

18、19、118、119...金屬矽化物18, 19, 118, 119. . . Metal telluride

20、120...溝渠20, 120. . . ditch

21~24、121~124...絕緣材料21~24, 121~124. . . Insulation Materials

25、26、125、126...主動區域25, 26, 125, 126. . . Active area

30~35、40~45、70~79、80、82、84...記憶胞30~35, 40~45, 70~79, 80, 82, 84. . . Memory cell

51~56...長條半導體材料堆疊51~56. . . Long strip of semiconductor material stack

60(60-1、60-2、60-3)、61、160~162...導線60 (60-1, 60-2, 60-3), 61, 160~162. . . wire

90~95...區塊選擇電晶體90~95. . . Block selection transistor

97、397...穿隧介電層97, 397. . . Tunneling dielectric layer

98、398...電荷儲存層98, 398. . . Charge storage layer

99、399...阻擋介電層99, 399. . . Blocking dielectric layer

85、88、89...串列選擇電晶體85, 88, 89. . . Tandem selection transistor

106、107、108...串列選擇線106, 107, 108. . . Serial selection line

128、129、130...源/汲極區域128, 129, 130. . . Source/bungee area

210、212、214...絕緣層210, 212, 214. . . Insulation

211、213...半導體211, 213. . . semiconductor

215...記憶材料層215. . . Memory material layer

250...山脊狀堆疊250. . . Ridge stack

315...電荷捕捉層315. . . Charge trapping layer

225、260...導線225, 260. . . wire

226、426、490、626...金屬矽化物226, 426, 490, 626. . . Metal telluride

400...離子佈植400. . . Ion implantation

401-1~401-n...硬式幕罩401-1~401-n. . . Hard mask

402、403...硬式幕罩402, 403. . . Hard mask

410...絕緣層410. . . Insulation

412~414...長條半導體材料412~414. . . Long strip of semiconductor material

412A~414A...長條半導體材料延伸412A~414A. . . Long strip of semiconductor material extension

415...記憶材料415. . . Memory material

425-1~425-n、460-1~460-n...導線425-1~425-n, 460-1~460-n. . . wire

429...閘極結構429. . . Gate structure

450、500...電晶體450, 500. . . Transistor

458、459、510、511、512...接觸栓塞458, 459, 510, 511, 512. . . Contact embolization

470、471、472...位元線470, 471, 472. . . Bit line

480...接觸邊界480. . . Contact boundary

481~483...接觸481~483. . . contact

491...串列選擇線491. . . Serial selection line

492...閘極介電層492. . . Gate dielectric layer

498、499...位元線498, 499. . . Bit line

495、496、502、503...接觸結構495, 496, 502, 503. . . Contact structure

520、521、522...整體串列選擇線520, 521, 522. . . Overall serial selection line

513、514...對準邊界513, 514. . . Alignment boundary

600...離子佈植600. . . Ion implantation

601-1~601-n...硬式幕罩601-1~601-n. . . Hard mask

602、603、648...硬式幕罩602, 603, 648. . . Hard mask

610...絕緣層610. . . Insulation

612~614...長條半導體材料612~614. . . Long strip of semiconductor material

612A~614A...長條半導體材料延伸612A~614A. . . Long strip of semiconductor material extension

615...記憶材料615. . . Memory material

625-1~625-n、460-1~460-n...導線625-1~625-n, 460-1~460-n. . . wire

629、649...閘極結構629, 649. . . Gate structure

650、651...電晶體650, 651. . . Transistor

661、662...串列選擇線661, 662. . . Serial selection line

671、672、673...位元線671, 672, 673. . . Bit line

665、666、680...接觸結構665, 666, 680. . . Contact structure

665A...接觸邊界665A. . . Contact boundary

670、725...共同源極線670, 725. . . Common source line

680a、680b、713、714...對準邊界680a, 680b, 713, 714. . . Alignment boundary

681~683、710~712...接觸栓塞681~683, 710~712. . . Contact embolization

691...串列選擇線691. . . Serial selection line

692...閘極介電層692. . . Gate dielectric layer

698、699...位元線698, 699. . . Bit line

695、696、702、703、705...接觸結構695, 696, 702, 703, 705. . . Contact structure

720、721、722...整體串列選擇線720, 721, 722. . . Overall serial selection line

875、975...積體電路875, 975. . . Integrated circuit

860...自動對準三維可程式電阻唯讀記憶體陣列860. . . Automatic alignment of three-dimensional programmable resistance read-only memory array

960...自動對準三維反及閘快閃記憶體陣列960. . . Automatic alignment of three-dimensional anti-gate flash memory array

858、958...平面解碼器858, 958. . . Planar decoder

859、959...串列選擇線859, 959. . . Serial selection line

861、961...列解碼器861, 961. . . Column decoder

862、962...字元線862, 962. . . Word line

863、963...行解碼器863, 963. . . Row decoder

864、964...位元線864, 964. . . Bit line

865、965、867、967...匯流排865, 965, 867, 967. . . Busbar

866、966...感測放大器/資料輸入結構866, 966. . . Sense amplifier / data input structure

874、974...其他電路874, 974. . . Other circuit

869、969...狀態機構869, 969. . . State agency

868、968...偏壓調整供應電壓868, 968. . . Bias adjustment supply voltage

871、971...資料輸入線871, 971. . . Data input line

872、972...資料輸出線872, 972. . . Data output line

第1圖顯示一個三維可程式化電阻記憶陣列之一記憶胞部分的示意圖,其包括複數個長條半導體材料平面與Y軸平行且安排成複數個山脊狀堆疊,一記憶層於長條半導體材料的側面,及複數條具有與其下的複數個山脊狀堆疊順型之底表面的導線。Figure 1 shows a schematic diagram of a memory cell portion of a three-dimensional programmable resistive memory array comprising a plurality of strips of semiconductor material plane parallel to the Y-axis and arranged in a plurality of ridge-like stacks, a memory layer over the elongated semiconductor material The sides, and the plurality of wires having the bottom surface of the plurality of ridge-shaped stacked compliant bottoms.

第2圖顯示第1圖的記憶胞結構在沿著Z-X平面的剖面圖。Fig. 2 is a cross-sectional view showing the memory cell structure of Fig. 1 along the Z-X plane.

第3圖顯示第1圖的記憶胞結構在沿著Y-X平面的剖面圖。Fig. 3 is a cross-sectional view showing the memory cell structure of Fig. 1 along the Y-X plane.

第4圖顯示具有第1圖結構的反熔絲為基礎記憶體之示意圖。Fig. 4 is a view showing the structure of the antifuse having the structure of Fig. 1 as a basic memory.

第5圖顯示一個三維反及閘快閃記憶結構之一記憶胞部分的示意圖,其包括複數個長條半導體材料平面與Y軸平行且安排成複數個山脊狀堆疊,一電荷捕捉記憶層於長條半導體材料的側面,及複數條具有與其下的複數個山脊狀堆疊順型之底表面的導線。Figure 5 is a schematic diagram showing a memory cell portion of a three-dimensional inverse gate flash memory structure including a plurality of strips of semiconductor material plane parallel to the Y-axis and arranged in a plurality of ridge-like stacks, a charge trapping memory layer being long The sides of the strip of semiconductor material, and the plurality of strips having the bottom surface of the plurality of ridge-shaped stacked compliant bottoms.

第6圖顯示第5圖的記憶胞結構在沿著Z-X平面的剖面圖。Fig. 6 is a cross-sectional view showing the memory cell structure of Fig. 5 along the Z-X plane.

第7圖顯示第5圖的記憶胞結構在沿著Y-X平面的剖面圖。Fig. 7 is a cross-sectional view showing the memory cell structure of Fig. 5 along the Y-X plane.

第8圖顯示具有第5圖結構的反及閘快閃記憶體之示意圖。Fig. 8 is a view showing the reverse gate flash memory having the structure of Fig. 5.

第9圖顯示一個類似於第5圖的三維反及閘快閃記憶結構之替代實施例的示意圖,其中記憶材料層自導線間移除。Figure 9 shows a schematic diagram of an alternative embodiment of a three-dimensional inverse gate flash memory structure similar to that of Figure 5, in which the layer of memory material is removed from between the wires.

第10圖顯示第9圖的記憶胞結構在沿著Z-X平面的剖面圖。Fig. 10 is a cross-sectional view showing the memory cell structure of Fig. 9 along the Z-X plane.

第11圖顯示第9圖的記憶胞結構在沿著Y-X平面的剖面圖。Fig. 11 is a cross-sectional view showing the memory cell structure of Fig. 9 along the Y-X plane.

第12顯示實施製造如第1、5、9圖中的記憶裝置的製程第一階段之剖面示意圖。Fig. 12 is a schematic cross-sectional view showing the first stage of the process for fabricating the memory device of Figs. 1, 5, and 9.

第13顯示實施製造如第1、5、9圖中的記憶裝置的製程第二階段之剖面示意圖。Figure 13 shows a schematic cross-sectional view showing the second stage of the process for fabricating the memory device of Figures 1, 5, and 9.

第14A顯示實施製造如第1圖中的記憶裝置的製程第三階段之剖面示意圖。Fig. 14A shows a schematic cross-sectional view showing the third stage of the process of manufacturing the memory device as shown in Fig. 1.

第14B顯示實施製造如第5圖中的記憶裝置的製程第三階段之剖面示意圖。Fig. 14B shows a schematic cross-sectional view showing the third stage of the process of manufacturing the memory device as shown in Fig. 5.

第15顯示實施製造如第1、5、9圖中的記憶裝置的製程第三階段之剖面示意圖。Fig. 15 is a cross-sectional view showing the third stage of the process of manufacturing the memory device as shown in Figs. 1, 5, and 9.

第16顯示實施製造如第1、5、9圖中的記憶裝置的製程第四階段之剖面示意圖。Fig. 16 is a schematic cross-sectional view showing the fourth stage of the process of manufacturing the memory device as shown in Figs. 1, 5, and 9.

第17圖的圖示係在Z軸旋轉90度之串列選擇結構的示意圖,也顯示製造如第1圖中的記憶裝置的製程第五階段之剖面示意圖,包含一硬式幕罩及選擇性的佈植步驟。Figure 17 is a schematic view of a tandem selection structure rotated 90 degrees on the Z-axis, and also shows a cross-sectional view of the fifth stage of the process for fabricating the memory device of Figure 1, including a hard mask and optional Planting steps.

第18圖顯示反熔絲為基礎記憶體之串列選擇結構的示意圖。Figure 18 shows a schematic diagram of the anti-fuse as a serial selection structure of the underlying memory.

第19圖提供類似於第18圖中的裝置佈局的上視圖,顯示出平面解碼結構之間的互連線。Figure 19 provides a top view similar to the device layout in Figure 18, showing the interconnections between the planar decoding structures.

第20圖顯示反熔絲為基礎記憶體之替代串列選擇結構的示意圖。Figure 20 shows a schematic diagram of the anti-fuse as an alternative serial selection structure for the underlying memory.

第21圖提供類似於第20圖中的裝置佈局的上視圖。Figure 21 provides a top view similar to the layout of the device in Figure 20.

第22圖的圖示係在將第5圖中的Z軸旋轉90度之串列選擇結構的示意圖,也顯示製造如第5圖中的記憶裝置的製程第五階段之剖面示意圖,包含一硬式幕罩及選擇性的佈植步驟。Figure 22 is a schematic view showing a tandem selection structure for rotating the Z-axis of Figure 5 by 90 degrees, and also showing a cross-sectional view of the fifth stage of the process for manufacturing the memory device of Figure 5, including a hard Curtain and optional planting steps.

第23圖顯示反及閘快閃為基礎記憶體之串列選擇結構的示意圖,其包括一共同源極線。Figure 23 is a diagram showing the reverse selection of the gate flash as the serial selection structure of the underlying memory, including a common source line.

第24圖提供類似於第23圖中的裝置佈局的上視圖,顯示出平面解碼結構之間的互連線。Figure 24 provides a top view similar to the layout of the device in Figure 23, showing the interconnections between the planar decoding structures.

第25圖顯示類似於第24圖中的平面解碼結構之示意圖,顯示其位元線結構。Fig. 25 is a view similar to the plane decoding structure in Fig. 24, showing its bit line structure.

第26圖顯示反及閘快閃為基礎記憶體之替代串列選擇結構的示意圖。Figure 26 shows a schematic diagram of the alternative tandem selection structure of the underlying memory flash.

第27圖提供類似於第26圖中的裝置佈局的上視圖。Figure 27 provides a top view similar to the layout of the device in Figure 26.

第28圖顯示根據本發明一實施例之積體電路的簡化方快示意圖,其中積體電路包括具有行、列及解碼電路之三維可程式電阻唯讀記憶體陣列。Figure 28 is a simplified schematic diagram of an integrated circuit in accordance with an embodiment of the present invention, wherein the integrated circuit includes a three-dimensional programmable resistive read-only memory array having rows, columns, and decoding circuits.

第29圖顯示根據本發明另一實施例之積體電路的簡化方快示意圖,其中積體電路包括具有行、列及解碼電路之三維反及閘快閃記憶體陣列。Figure 29 is a simplified schematic diagram of an integrated circuit in accordance with another embodiment of the present invention, wherein the integrated circuit includes a three-dimensional inverse NAND flash memory array having rows, columns and decoding circuits.

第30圖為三維反及閘快閃記憶體陣列一部份之穿隧電子顯微鏡圖。Figure 30 is a tunneling electron micrograph of a portion of a three-dimensional inverse gate flash memory array.

第31圖顯示串列選擇線佈局的上視圖。Figure 31 shows a top view of the serial selection line layout.

第32圖顯示具有階梯結構終結位元線平面的一替代實施例記憶陣列的示意圖。Figure 32 shows a schematic diagram of an alternate embodiment memory array having a staircase structure termination bit line plane.

第33圖顯示具有階梯結構終結位元線平面,極連接串列選擇線的階梯接觸栓塞之另一替代實施例記憶陣列的示意圖。Figure 33 shows a schematic diagram of another alternate embodiment memory array having a stepped structure termination bit line plane and a step contact plug of the pole connection string select line.

第34圖顯示製造如第33圖中的記憶裝置的製程下一階段之剖面示意圖,其中位元線接觸與階梯結構中不同的階級位置連接。Figure 34 is a cross-sectional view showing the next stage of the process of fabricating the memory device of Figure 33, wherein the bit line contacts are connected to different step positions in the step structure.

第35圖是顯示實施第34圖中所描述之反及閘快閃裝置的電路示意圖。Figure 35 is a circuit diagram showing the implementation of the anti-gate flash device described in Figure 34.

第36圖顯示一種可能的兩陣列實施例的平面圖。Figure 36 shows a plan view of one possible two array embodiment.

10...絕緣層10. . . Insulation

11~14...長條半導體材料11~14. . . Long strip of semiconductor material

15...記憶材料15. . . Memory material

16、17...導線16, 17. . . wire

18、19...金屬矽化物18, 19. . . Metal telluride

20...溝渠20. . . ditch

21~24...絕緣材料21~24. . . Insulation Materials

Claims (22)

一種記憶裝置,包含:一積體電路基板;複數個長條半導體材料堆疊延伸出該積體電路基板,該複數個堆疊包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置,分享該複數個平面位置中的一相同平面位置之該些長條半導體材料藉由階梯狀結構連接至複數個位元線接觸中的一個相同位元線接觸,如此該階梯狀結構中的階梯位於該些長條半導體材料的端點處;複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該些長條半導體材料的表面與該複數條導線交會點建立一個三維陣列的交會區域;以及記憶元件於該交會區域,其經由該些長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞。 A memory device comprising: an integrated circuit substrate; a plurality of elongated semiconductor material stacks extending out of the integrated circuit substrate, the plurality of stacks comprising at least two elongated semiconductor materials separated by an insulating layer into a plurality of planar locations The plurality of planar locations, the plurality of semiconductor materials sharing the same planar position of the plurality of planar locations are connected by a stepped structure to one of the plurality of bitline contacts, such that the stepped a step in the structure is located at an end of the plurality of strips of semiconductor material; a plurality of wires are arranged orthogonal to the plurality of stacks and conform to the plurality of stacks, such that the surface of the plurality of strips of semiconductor material And intersecting the plurality of wire intersections to establish a three-dimensional array of intersection regions; and the memory component is in the intersection region, and the memory cells of the three-dimensional array are accessible via the plurality of semiconductor materials and the plurality of wires. 如申請專利範圍第1項之記憶裝置,更包括:解碼電路,與該複數個堆疊中的該些長條半導體材料及該複數條導線耦接,以存取該記憶胞。 The memory device of claim 1, further comprising: a decoding circuit coupled to the plurality of semiconductor materials and the plurality of wires in the plurality of stacks to access the memory cell. 如申請專利範圍第1項之記憶裝置,其中該記憶元件包含反熔絲。 The memory device of claim 1, wherein the memory element comprises an anti-fuse. 如申請專利範圍第1項之記憶裝置,其中該記憶元件包含電荷儲存結構。 The memory device of claim 1, wherein the memory element comprises a charge storage structure. 如申請專利範圍第1項之記憶裝置,其中該記憶胞包含埋藏通道電荷儲存電晶體。 The memory device of claim 1, wherein the memory cell comprises a buried channel charge storage transistor. 如申請專利範圍第1項之記憶裝置,其中該複數個堆疊中的該些長條半導體材料包含摻雜半導體。 The memory device of claim 1, wherein the plurality of semiconductor materials in the plurality of stacks comprise doped semiconductors. 如申請專利範圍第1項之記憶裝置,其中該複數條導線包含摻雜半導體。 The memory device of claim 1, wherein the plurality of wires comprise a doped semiconductor. 如申請專利範圍第1項之記憶裝置,其中該記憶元件包含一共同層的記憶材料之部分於該複數個堆疊與該複數條導線之間。 The memory device of claim 1, wherein the memory element comprises a portion of a common layer of memory material between the plurality of stacks and the plurality of wires. 如申請專利範圍第1項之記憶裝置,包含一穿隧層、一電荷捕捉層及一阻擋層於該複數個堆疊與該複數條導線之間,且其中該穿隧層、電荷捕捉層及阻擋層的組合構成該記憶元件於該交會區域。 The memory device of claim 1, comprising a tunneling layer, a charge trapping layer and a barrier layer between the plurality of stacks and the plurality of wires, wherein the tunneling layer, the charge trapping layer and the blocking layer The combination of layers constitutes the memory element in the intersection area. 如申請專利範圍第1項之記憶裝置,更包含複數條位元線安排於該複數個堆疊之上且與該些長條半導體材料平行,其中該複數條位元線中的不同位元線經由該複數個位元線接觸及該階梯狀結構而與該複數個堆疊中的不同平面位置電性連接。 The memory device of claim 1, further comprising a plurality of bit lines arranged on the plurality of stacks and parallel to the plurality of strips of semiconductor material, wherein different bit lines of the plurality of bit lines are via The plurality of bit line contacts and the stepped structure are electrically connected to different planar positions in the plurality of stacks. 一種記憶裝置,包含:一積體電路基板;複數個長條半導體材料堆疊延伸出該積體電路基板,該複數個堆疊包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置,分享該複數個平面位置中的一個相同平面位置之該些長條半導體材料藉由階梯狀結構連接至複數個位元線接觸中的一個相同位元線接觸,如此該階梯狀結構中的階梯位於該些長條半導體材料的端點處;第一複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該些長條半導體材料的表面與該複數條導線交會點建立 一個三維陣列的交會區域;記憶元件於該交會區域,其經由該些長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞;複數個導電順形結構,每一個導電順形結構於該複數個堆疊中的一不同堆疊之上;第二複數條導線安排於該複數個堆疊之上,且與該些長條半導體材料平行,該第二複數條導線中的每一條導線與該複數個導電順形結構中的不同導電順形結構電性連接;以及第三複數條導線安排於該第一複數條導線之上,且與該第一複數條導線平行,該第三複數條導線中的每一條導線與該第二複數條導線中的不同導線連接。 A memory device comprising: an integrated circuit substrate; a plurality of elongated semiconductor material stacks extending out of the integrated circuit substrate, the plurality of stacks comprising at least two elongated semiconductor materials separated by an insulating layer into a plurality of planar locations The different planar positions, the plurality of semiconductor materials sharing the same planar position of the plurality of planar positions are connected by a stepped structure to one of the plurality of bit line contacts, such that the step is a step in the structure is located at an end of the plurality of strips of semiconductor material; the first plurality of wires are arranged orthogonal to the plurality of stacks, and conform to the plurality of stacks, such that the plurality of strips of semiconductor material The surface is established with the intersection of the plurality of wires a three-dimensional array of intersection regions; the memory element is in the intersection region, and the memory cells of the three-dimensional array are accessible via the plurality of semiconductor materials and the plurality of wires; and a plurality of conductive conformal structures, each electrically conductive Forming a structure on a different stack of the plurality of stacks; the second plurality of wires are disposed over the plurality of stacks and parallel to the plurality of strips of semiconductor material, each of the second plurality of wires Electrically connecting with the different conductive conformal structures of the plurality of conductive conformal structures; and the third plurality of wires are disposed on the first plurality of wires and parallel to the first plurality of wires, the third plurality Each of the wires is connected to a different one of the second plurality of wires. 如申請專利範圍第11項之記憶裝置,更包括:解碼電路,與該複數個堆疊中的該些長條半導體材料、該第一複數條導線及該第三複數條導線耦接,以存取該記憶胞。 The memory device of claim 11, further comprising: a decoding circuit coupled to the plurality of semiconductor materials, the first plurality of wires, and the third plurality of wires in the plurality of stacks for accessing The memory cell. 如申請專利範圍第11項之記憶裝置,其中該記憶元件包含反熔絲。 The memory device of claim 11, wherein the memory element comprises an anti-fuse. 如申請專利範圍第11項之記憶裝置,其中該記憶元件包含電荷儲存結構。 The memory device of claim 11, wherein the memory element comprises a charge storage structure. 如申請專利範圍第11項之記憶裝置,其中該記憶胞包含埋藏通道電荷儲存電晶體。 The memory device of claim 11, wherein the memory cell comprises a buried channel charge storage transistor. 如申請專利範圍第11項之記憶裝置,其中該複數個堆疊中的該些長條半導體材料包含摻雜半導體。 The memory device of claim 11, wherein the plurality of semiconductor materials in the plurality of stacks comprise doped semiconductors. 如申請專利範圍第11項之記憶裝置,其中該第一複數條導線包含摻 雜半導體。 The memory device of claim 11, wherein the first plurality of wires comprise a blend Miscellaneous semiconductors. 如申請專利範圍第11項之記憶裝置,其中該記憶元件包含一共同層的記憶材料之部分於該複數個堆疊與該第一複數條導線之間。 The memory device of claim 11, wherein the memory element comprises a portion of a common layer of memory material between the plurality of stacks and the first plurality of wires. 如申請專利範圍第11項之記憶裝置,包含一穿隧層、一電荷捕捉層及一阻擋層於該複數個堆疊與該第一複數條導線之間,且其中該穿隧層、電荷捕捉層及阻擋層的組合構成該記憶元件於該交會區域。 The memory device of claim 11, comprising a tunneling layer, a charge trapping layer and a barrier layer between the plurality of stacks and the first plurality of wires, wherein the tunneling layer and the charge trapping layer And the combination of barrier layers constitutes the memory element in the intersection area. 如申請專利範圍第11項之記憶裝置,更包含複數條位元線安排於該複數個堆疊之上且與該些長條半導體材料平行,其中該複數條位元線中的不同位元線經由該複數個位元線接觸及該階梯狀結構而與該複數個堆疊中的不同平面位置電性連接。 The memory device of claim 11, further comprising a plurality of bit lines arranged on the plurality of stacks and parallel to the plurality of strips of semiconductor material, wherein different bit lines of the plurality of bit lines are via The plurality of bit line contacts and the stepped structure are electrically connected to different planar positions in the plurality of stacks. 一種製造一記憶裝置的方法,包含:形成複數個長條半導體材料堆疊延伸出該積體電路基板,該複數個堆疊包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置,分享該複數個平面位置中的一個相同平面位置之該些長條半導體材料藉由階梯狀結構連接至複數個位元線接觸中的一個相同位元線接觸,如此該階梯狀結構中的階梯位於該些長條半導體材料的端點處;形成複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該些長條半導體材料的表面與該複數條導線交會點建立一個三維陣列的交會區域;以及形成記憶元件於該交會區域,其經由該些長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞。 A method of fabricating a memory device, comprising: forming a plurality of strips of semiconductor material material extending from the integrated circuit substrate, the plurality of stacks comprising at least two elongated semiconductor materials separated by an insulating layer into a plurality of planar locations The plurality of planar positions, the plurality of semiconductor materials sharing the same planar position of the plurality of planar positions are connected to one of the plurality of bit line contacts by a stepped structure, such that the stepped structure a step in the end of the plurality of semiconductor materials; forming a plurality of wires arranged orthogonal to the plurality of stacks, and conforming to the plurality of stacks, such that the surface of the plurality of semiconductor materials Forming a three-dimensional array of intersection regions with the plurality of wire intersections; and forming a memory element in the intersection region, the plurality of semiconductor materials and the plurality of wires establishing access to the three-dimensional array of memory cells. 一種製造一記憶裝置的方法,包含: 形成複數個長條半導體材料堆疊延伸出該積體電路基板,該複數個堆疊包括至少兩個長條半導體材料由絕緣層分隔而成為複數個平面位置中的不同平面位置,分享該複數個平面位置中的一個相同平面位置之該些長條半導體材料藉由階梯狀結構連接至複數個位元線接觸中的一個相同位元線接觸,如此該階梯狀結構中的階梯位於該些長條半導體材料的端點處;形成第一複數條導線安排成正交於該複數個堆疊之上,且與該複數個堆疊順形,如此於該些長條半導體材料的表面與該複數條導線交會點建立一個三維陣列的交會區域;形成記憶元件於該交會區域,其經由該些長條半導體材料與該複數條導線建立可存取之該三維陣列的記憶胞;形成複數個導電順形結構,每一個導電順形結構於該複數個堆疊中的一不同堆疊之上;形成第二複數條導線安排於該複數個堆疊之上,且與該些長條半導體材料平行,該第二複數條導線中的每一條導線與該複數個導電順形結構中的不同導電順形結構電性連接;以及形成第三複數條導線安排於該第一複數條導線之上,且與該第一複數條導線平行,該第三複數條導線中的每一條導線與該第二複數條導線中的不同導線連接。 A method of manufacturing a memory device, comprising: Forming a plurality of strips of semiconductor material stack extending out of the integrated circuit substrate, the plurality of stacks including at least two strips of semiconductor material separated by an insulating layer to form different planar positions in a plurality of planar positions, sharing the plurality of planar positions The elongated semiconductor materials in a same planar position are connected to one of the plurality of bit line contacts by a stepped structure, such that the steps in the stepped structure are located in the elongated semiconductor material Forming a first plurality of wires arranged orthogonal to the plurality of stacks and conforming to the plurality of stacks such that a surface of the plurality of semiconductor materials intersects with the plurality of wires a three-dimensional array of intersection regions; forming a memory element in the intersection region, the memory cells of the three-dimensional array accessible by the plurality of semiconductor materials and the plurality of wires; forming a plurality of conductive conformal structures, each a conductive conformal structure over a different stack of the plurality of stacks; forming a second plurality of wires arranged at the plurality of Above the stack, and in parallel with the strips of semiconductor material, each of the second plurality of wires is electrically connected to a different one of the plurality of electrically conductive conformal structures; and forming a third plurality of strips A wire is disposed over the first plurality of wires and parallel to the first plurality of wires, each of the third plurality of wires being coupled to a different one of the second plurality of wires.
TW100102676A 2010-01-25 2011-01-25 3d memory array with improved ssl and bl contact layout TWI462116B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/692,798 US8208279B2 (en) 2009-03-03 2010-01-25 Integrated circuit self aligned 3D memory array and manufacturing method

Publications (2)

Publication Number Publication Date
TW201126535A TW201126535A (en) 2011-08-01
TWI462116B true TWI462116B (en) 2014-11-21

Family

ID=44645385

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100102676A TWI462116B (en) 2010-01-25 2011-01-25 3d memory array with improved ssl and bl contact layout

Country Status (2)

Country Link
CN (1) CN102194821B (en)
TW (1) TWI462116B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644379B (en) * 2017-03-08 2018-12-11 大陸商長江存儲科技有限責任公司 Structure and method for testing three-dimensional memory device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8488382B1 (en) * 2011-12-21 2013-07-16 Sandisk Technologies Inc. Erase inhibit for 3D non-volatile memory
CN103208302B (en) * 2012-01-17 2015-07-15 旺宏电子股份有限公司 A storage device and a method for selecting a local bit line in the storage device
US8921818B2 (en) * 2012-11-09 2014-12-30 Taiwan Semiconductor Manufacturing Company, Ltd. Resistance variable memory structure
CN103296022B (en) * 2012-12-21 2016-04-20 上海中航光电子有限公司 The on-off circuit of display panel and display panel
CN105810640A (en) * 2014-12-31 2016-07-27 上海格易电子有限公司 3D NAND ground select line and preparation method thereof
CN106158021B (en) * 2015-03-26 2020-02-18 旺宏电子股份有限公司 Three-dimensional NAND memory with decoder and local word line driver
CN106887434B (en) * 2015-12-15 2019-07-05 旺宏电子股份有限公司 Three-dimensional memory element
CN105677578B (en) * 2016-01-08 2018-08-24 深圳大学 A kind of control method and control system of 3D flash memories
CN108206042A (en) * 2016-12-20 2018-06-26 展讯通信(上海)有限公司 The wordline bondage method and ROM memory of ROM memory
KR20190019672A (en) * 2017-08-18 2019-02-27 에스케이하이닉스 주식회사 Semiconductor device and method of manufacturing the same
WO2019168752A1 (en) * 2018-02-27 2019-09-06 Micron Technology, Inc Three dimensional memory devices
US10446577B1 (en) 2018-07-06 2019-10-15 Micron Technology, Inc. Integrated assemblies having thicker semiconductor material along one region of a conductive structure than along another region
TWI697905B (en) * 2018-08-07 2020-07-01 日商東芝記憶體股份有限公司 Semiconductor memory device
FR3085530B1 (en) 2018-08-31 2020-10-02 St Microelectronics Rousset INTEGRATED CIRCUIT CONTAINING AT LEAST ONE MEMORY CELL WITH AN ANTI-FUSE DEVICE.
US11502091B1 (en) * 2021-05-21 2022-11-15 Micron Technology, Inc. Thin film transistor deck selection in a memory device
CN118431184A (en) * 2024-07-05 2024-08-02 芯梦达半导体科技(济南)有限公司 Storage device, semiconductor device and memory system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080149913A1 (en) * 2006-12-26 2008-06-26 Hiroyasu Tanaka Semiconductor memory device and method of manufacturing the same
US20080173932A1 (en) * 2007-01-10 2008-07-24 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory and method for manufacturing the same
US7420242B2 (en) * 2005-08-31 2008-09-02 Macronix International Co., Ltd. Stacked bit line dual word line nonvolatile memory
US20080285350A1 (en) * 2007-05-18 2008-11-20 Chih Chieh Yeh Circuit and method for a three dimensional non-volatile memory
US20090097309A1 (en) * 2007-10-03 2009-04-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device, and method for controlling nonvolatile semiconductor storage device
US20090168534A1 (en) * 2008-01-02 2009-07-02 Samsung Electronics Co., Ltd. Three-dimensional memory device with multi-plane architecture
US20090184360A1 (en) * 2008-01-18 2009-07-23 Samsung Electronics Co., Ltd. Non-volatile memory device and method of fabricating the same
US20090212350A1 (en) * 2008-02-25 2009-08-27 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device and method of manufacturing the same
KR20090125893A (en) * 2008-06-03 2009-12-08 경북대학교 산학협력단 Highly Integrated Vertical Flash Memory Cell Strings, Cell Devices, and Fabrication Methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW406419B (en) * 1998-01-15 2000-09-21 Siemens Ag Memory-cells arrangement and its production method
US7081377B2 (en) * 2002-06-27 2006-07-25 Sandisk 3D Llc Three-dimensional memory
US7005350B2 (en) * 2002-12-31 2006-02-28 Matrix Semiconductor, Inc. Method for fabricating programmable memory array structures incorporating series-connected transistor strings
US7459715B2 (en) * 2003-04-03 2008-12-02 Kabushiki Kaisha Toshiba Resistance change memory device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7420242B2 (en) * 2005-08-31 2008-09-02 Macronix International Co., Ltd. Stacked bit line dual word line nonvolatile memory
US20080149913A1 (en) * 2006-12-26 2008-06-26 Hiroyasu Tanaka Semiconductor memory device and method of manufacturing the same
US20080173932A1 (en) * 2007-01-10 2008-07-24 Kabushiki Kaisha Toshiba Nonvolatile semiconductor memory and method for manufacturing the same
US20080285350A1 (en) * 2007-05-18 2008-11-20 Chih Chieh Yeh Circuit and method for a three dimensional non-volatile memory
US20090097309A1 (en) * 2007-10-03 2009-04-16 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device, and method for controlling nonvolatile semiconductor storage device
US20090168534A1 (en) * 2008-01-02 2009-07-02 Samsung Electronics Co., Ltd. Three-dimensional memory device with multi-plane architecture
US20090184360A1 (en) * 2008-01-18 2009-07-23 Samsung Electronics Co., Ltd. Non-volatile memory device and method of fabricating the same
US20090212350A1 (en) * 2008-02-25 2009-08-27 Kabushiki Kaisha Toshiba Nonvolatile semiconductor storage device and method of manufacturing the same
KR20090125893A (en) * 2008-06-03 2009-12-08 경북대학교 산학협력단 Highly Integrated Vertical Flash Memory Cell Strings, Cell Devices, and Fabrication Methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI644379B (en) * 2017-03-08 2018-12-11 大陸商長江存儲科技有限責任公司 Structure and method for testing three-dimensional memory device

Also Published As

Publication number Publication date
TW201126535A (en) 2011-08-01
CN102194821B (en) 2013-06-19
CN102194821A (en) 2011-09-21

Similar Documents

Publication Publication Date Title
TWI462116B (en) 3d memory array with improved ssl and bl contact layout
JP5759285B2 (en) Three-dimensional memory array having improved contact layout of string select lines and bit lines
TWI427744B (en) Three-dimensional array memory architecture with diodes in memory strings
CN102610615B (en) Memory device of three-dimensional NOR type array
CN102610259B (en) Storage device and method of operating the storage device
US8208279B2 (en) Integrated circuit self aligned 3D memory array and manufacturing method
KR101975812B1 (en) Memory architecture of 3d array with diode in memory string
US8811077B2 (en) Memory architecture of 3D array with improved uniformity of bit line capacitances
US8659944B2 (en) Memory architecture of 3D array with diode in memory string
TWI490862B (en) Memory architecture of 3d array with improved uniformity of bit line capacitances
US9324728B2 (en) Three-dimensional vertical gate NAND flash memory including dual-polarity source pads