JPH0917795A - Bump structure - Google Patents
Bump structureInfo
- Publication number
- JPH0917795A JPH0917795A JP7187887A JP18788795A JPH0917795A JP H0917795 A JPH0917795 A JP H0917795A JP 7187887 A JP7187887 A JP 7187887A JP 18788795 A JP18788795 A JP 18788795A JP H0917795 A JPH0917795 A JP H0917795A
- Authority
- JP
- Japan
- Prior art keywords
- bump
- metal
- laminated
- barrier metal
- core
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002184 metal Substances 0.000 claims abstract description 41
- 229910052751 metal Inorganic materials 0.000 claims abstract description 41
- 229910000679 solder Inorganic materials 0.000 claims abstract description 17
- 230000004888 barrier function Effects 0.000 claims abstract description 15
- 239000004065 semiconductor Substances 0.000 claims abstract description 12
- 230000008646 thermal stress Effects 0.000 abstract description 3
- 238000005336 cracking Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 16
- 230000035882 stress Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 6
- 239000010949 copper Substances 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 239000011295 pitch Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910020816 Sn Pb Inorganic materials 0.000 description 1
- 229910020922 Sn-Pb Inorganic materials 0.000 description 1
- 229910008783 Sn—Pb Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/05001—Internal layers
- H01L2224/05075—Plural internal layers
- H01L2224/0508—Plural internal layers being stacked
- H01L2224/05085—Plural internal layers being stacked with additional elements, e.g. vias arrays, interposed between the stacked layers
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/341—Surface mounted components
- H05K3/3431—Leadless components
Landscapes
- Wire Bonding (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はフリップチップに供され
る金属バンプの構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of metal bumps used for flip chips.
【0002】[0002]
【従来の技術】図6は従来のフリップチップにおけるバ
ンプの一例を示している。本図は模式的に示したもので
あり、実際の寸法とは異なる。図中6は半導体基板を示
し、図示しない電子回路がモノリシックに形成されてお
り、一面上に外部との電気的接続のための電極パッド1
が形成されている。電極パッド1は主にAl(アルミニ
ウム)が用いられ、CVD法及びフォトプロセスにより
形成したSiO2(酸化珪素)やSiN(窒化珪素)か
らなる絶縁保護膜7にその周縁が囲まれ、一部が露出さ
れ、該露出部にバリヤメタル2が被着されている。バリ
ヤメタル2は多層金属膜であり、一般に、下層は金属間
化合物の生成を防ぐ拡散防止層としてのCr(クロム)
やTi(チタン)等からなり、上層は半田との濡れ性が
よいCu(銅)やNi(ニッケル)等からなる。さら
に、バリヤメタル2上にはSn(錫)―Pb(鉛)系の
半田からなる半田バンプ5が形成されている。2. Description of the Related Art FIG. 6 shows an example of bumps in a conventional flip chip. This diagram is a schematic view, and is different from the actual size. Reference numeral 6 in the drawing denotes a semiconductor substrate, in which an electronic circuit (not shown) is monolithically formed, and an electrode pad 1 for electrical connection to the outside is formed on one surface.
Are formed. The electrode pad 1 is mainly made of Al (aluminum), and its periphery is surrounded by a part of an insulating protective film 7 made of SiO 2 (silicon oxide) or SiN (silicon nitride) formed by a CVD method and a photo process, and a part thereof. The barrier metal 2 is exposed and the exposed portion is covered with the barrier metal 2. The barrier metal 2 is a multi-layer metal film, and generally, the lower layer is Cr (chromium) as a diffusion prevention layer that prevents the formation of intermetallic compounds.
And Ti (titanium) and the like, and the upper layer is made of Cu (copper) and Ni (nickel) which have good wettability with solder. Further, solder bumps 5 made of Sn (tin) -Pb (lead) based solder are formed on the barrier metal 2.
【0003】上記したような半田バンプ5の形成された
フリップチップは、図7の模式図に示す如く実装基板1
0上にCCB(コントロールド・コラップス・ボンディ
ング)法により表面実装される。即ち、実装基板10上
に形成された基板電極11と、フリップチップに形成さ
れた半田バンプ5とが位置合わせされて当接され、リフ
ローなどにより半田バンプ5が溶融され、電気的接続が
なされる。The flip chip having the solder bumps 5 as described above is mounted on the mounting substrate 1 as shown in the schematic view of FIG.
It is surface-mounted on CC by CCB (Controlled Collapse Bonding) method. That is, the board electrodes 11 formed on the mounting board 10 and the solder bumps 5 formed on the flip chip are aligned and brought into contact with each other, and the solder bumps 5 are melted by reflowing or the like to be electrically connected. .
【0004】[0004]
【発明が解決しようとする課題】上記のようなバンプ構
造では、フリップチップ実装後に温度サイクルなどの熱
ストレスがかかった場合、半導体基板と実装基板との熱
膨張係数の不整合のため、半田バンプに応力が集中しク
ラックが入ったり、バンプが基板電極から剥離するとい
った信頼性上の問題が発生することがあった。また、そ
れを防ぐために半導体基板と実装基板との間に樹脂を注
入し、バンプに応力が集中することを少なくする方法が
あるがコストアップとなる。本発明はこれらの問題点を
解消し、安価で信頼性の良いバンプ構造とすることを目
的とする。In the bump structure as described above, when a thermal stress such as a temperature cycle is applied after the flip chip mounting, the solder bumps are not formed due to the mismatch of the thermal expansion coefficient between the semiconductor substrate and the mounting substrate. In some cases, stress was concentrated on the surface of the substrate, causing cracks, and bumps were separated from the substrate electrodes, leading to reliability problems. In order to prevent this, there is a method of injecting a resin between the semiconductor substrate and the mounting substrate to reduce the concentration of stress on the bumps, but this increases the cost. An object of the present invention is to solve these problems and provide a bump structure that is inexpensive and has high reliability.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するた
め、本発明は、フリップチップ型半導体装置の電極部に
形成されるバンプの構造であって、半導体装置の電極パ
ッド上に積層したバリヤメタルと、該バリヤメタル上に
立設した複数の金属柱と、該複数の金属柱上にわたり積
層したコアバンプと、該コアバンプ上に積層した半田バ
ンプとからなることを特徴とする。In order to achieve the above object, the present invention has a structure of a bump formed on an electrode portion of a flip-chip type semiconductor device, and a barrier metal laminated on an electrode pad of the semiconductor device. It is characterized by comprising a plurality of metal pillars standing on the barrier metal, core bumps laminated over the plurality of metal pillars, and solder bumps laminated on the core bumps.
【0006】[0006]
【作用】このように構成することにより、バンプと電極
パッド及び実装基板電極との接合強度は従来構造のバン
プと同一としながら、温度サイクル等のストレスを延性
のある細い金属柱の変形で吸収するようにして、バンプ
のクラックや基板電極からの剥離を防止することができ
る。With this configuration, the bonding strength between the bump and the electrode pad and the mounting substrate electrode is the same as that of the bump having the conventional structure, but stress such as temperature cycle is absorbed by the deformation of the ductile thin metal column. In this way, cracks in the bumps and peeling from the substrate electrodes can be prevented.
【0007】[0007]
【実施例】以下に本発明の実施例を図面に沿って説明す
る。図1は本発明の実施例の概要を模式的に示した断面
図で、本図において図5及び図6と同一の符号のものは
同一または相当するものを示し、3は複数のCuからな
る金属柱、4は複数の金属柱3上にわたって形成したC
uからなるコアバンプ、5はコアバンプ4上に形成した
Sn―Pb系の半田バンプを示す。図2は図1の実施例
の製造工程の概略を模式的に示した図である。一面上に
電子ビーム蒸着法で被着した厚さ1μm程度のAl薄膜
をフォトプロセスでパターニングし、その一部を電極パ
ッド1にする(図2a)。次いで表面にSiN膜を厚さ
1μm程度堆積し、フォトプロセスで電極パッド1の周
縁部に重なるSiN膜を残してコンタクトホールを開
け、絶縁保護膜7を形成する(図2b)。この後Cr、
Cuの順にスパッタし、厚さ数1000オングストロー
ムのバリアメタル層2aを形成、その上にフォトレジス
ト8を厚さ30μm程度にスピンコートする(図2
c)。次に、フォトレジスト8を図2dに示すようにパ
ターニングし、前に形成したバリヤメタル層2aを給電
層としてCuの電解めっきを行い、複数の金属柱3を形
成、さらに電解めっきを続けて複数の金属柱3上にわた
り成長したコアバンプ4を形成する。次いで、再度バリ
ヤメタル層2aを給電層として、半田の電解めっきを行
い、半田バンプ5を形成する(図2e)。その後レジス
ト8を剥離し、バリヤメタル層2aを選択的にエッチン
グした後、不活性雰囲気中で一旦半田を溶融し、図1に
示した最終形状を得る。Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a sectional view schematically showing the outline of an embodiment of the present invention. In this figure, the same reference numerals as those in FIGS. 5 and 6 indicate the same or corresponding ones, and 3 is composed of a plurality of Cu. Metal pillars 4 are C formed over a plurality of metal pillars 3.
Core bumps 5 made of u are Sn—Pb based solder bumps formed on the core bumps 4. FIG. 2 is a diagram schematically showing an outline of the manufacturing process of the embodiment of FIG. An Al thin film having a thickness of about 1 μm deposited on one surface by electron beam evaporation is patterned by a photo process, and a part thereof is used as an electrode pad 1 (FIG. 2a). Then, a SiN film is deposited on the surface to a thickness of about 1 μm, and a contact hole is formed by a photo process while leaving the SiN film overlapping the peripheral edge of the electrode pad 1 to form an insulating protective film 7 (FIG. 2b). After this, Cr,
Cu is sputtered in this order to form a barrier metal layer 2a having a thickness of several thousand angstroms, and a photoresist 8 is spin-coated thereon to a thickness of about 30 μm (FIG. 2).
c). Next, the photoresist 8 is patterned as shown in FIG. 2d, electrolytic plating of Cu is performed by using the barrier metal layer 2a formed previously as a power feeding layer, a plurality of metal columns 3 are formed, and electrolytic plating is further continued to form a plurality of metallic columns. The core bump 4 grown over the metal pillar 3 is formed. Next, electrolytic plating of solder is performed again using the barrier metal layer 2a as a power supply layer to form the solder bumps 5 (FIG. 2e). After that, the resist 8 is peeled off, the barrier metal layer 2a is selectively etched, and then the solder is once melted in an inert atmosphere to obtain the final shape shown in FIG.
【0008】このような構造をしているためプリント基
板にCCB法により接続することができる。図3はその
時の状態を表す。本図も模式的に表したものであり、実
際の寸法とは異なる。10は実装基板、11は実装基板
10上に形成された接続用の基板電極を示す。この状態
で温度ストレスが加わると一般に膨張係数の大きい実装
基板が半導体基板よりも伸び縮みが大きく、接合された
バンプ部に応力が集中する。この応力を複数の金属柱3
の部分の変形により吸収し、半田バンプ5の部分に加わ
る応力を減少させることができる。図4、図5は金属柱
の横断面の例を示すものである。図4は、円形の断面を
持ち、等ピッチで複数個配置した金属柱を示している。
例えば金属柱の径は10μmであり、ピッチを30μm
として25本形成することによって良好な結果を得るこ
とができる。図5は、紙面上下方向に長くした断面を有
し、それを紙面水平方向に繰り返し複数個配置した金属
柱を示しており、紙面上下方向のストレスは吸収し難い
が水平方向のストレスを吸収しかつ図4の例よりも強度
を強くしたものである。例えばこの場合の金属柱の寸法
は10μm×80μmであり、ピッチを30μmとして
5本形成することによって良好な結果を得ることができ
る。この他金属柱の形状は種々の例が考えられるが、延
性を持たせるため複数の細い金属からなり、一つのコア
バンプを支持しているのであれば、本発明の主旨から逸
脱するものではない。With such a structure, it is possible to connect to a printed circuit board by the CCB method. FIG. 3 shows the state at that time. This figure is also a schematic representation and differs from the actual size. Reference numeral 10 denotes a mounting board, and 11 denotes a board electrode for connection formed on the mounting board 10. When temperature stress is applied in this state, the mounting substrate having a large expansion coefficient generally expands and contracts more than the semiconductor substrate, and the stress concentrates on the bonded bump portions. This stress is applied to a plurality of metal columns 3
The stress applied to the portion of the solder bump 5 due to the deformation of the portion can be reduced. 4 and 5 show examples of cross sections of the metal columns. FIG. 4 shows a plurality of metal columns having a circular cross section and arranged at equal pitches.
For example, the diameter of the metal columns is 10 μm and the pitch is 30 μm.
As a result, good results can be obtained by forming 25 pieces. FIG. 5 shows a metal column having a cross section that is elongated in the vertical direction of the paper and in which a plurality of metal columns are repeatedly arranged in the horizontal direction of the paper. It is difficult to absorb the stress in the vertical direction of the paper but absorb the stress in the horizontal direction. Moreover, the strength is stronger than that of the example of FIG. For example, the size of the metal columns in this case is 10 μm × 80 μm, and good results can be obtained by forming five metal columns with a pitch of 30 μm. Various other examples of the shape of the metal column can be considered, but as long as they are made of a plurality of thin metals to have ductility and support one core bump, they do not depart from the gist of the present invention.
【0009】[0009]
【発明の効果】以上説明したように、熱ストレスを吸収
することができるので、実装基板と半導体基板との熱膨
張係数の差が大きい場合でもフリップチップ実装ができ
る。従って、本発明によれば、従来よりチップサイズの
大きなフリップチップを提供することを可能にし、より
大処理の可能なフリップチップの提供に貢献すること著
しい。また、基板間に樹脂を流し込んでストレスを緩和
する必要もなく、実装工程を減じることでコストダウン
ができる。As described above, since the thermal stress can be absorbed, flip-chip mounting can be performed even when the difference in thermal expansion coefficient between the mounting substrate and the semiconductor substrate is large. Therefore, according to the present invention, it is possible to provide a flip chip having a larger chip size than in the past, and it is remarkable to contribute to the provision of a flip chip capable of larger processing. Further, there is no need to pour resin between the substrates to relieve the stress, and the cost can be reduced by reducing the mounting process.
【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.
【図2】図1の実施例の製造工程の概略を示す図であ
る。FIG. 2 is a diagram schematically showing a manufacturing process of the embodiment of FIG.
【図3】図1の実施例を適用したフリップチップの実装
状態を示す図である。FIG. 3 is a diagram showing a mounted state of a flip chip to which the embodiment of FIG. 1 is applied.
【図4】本発明の金属柱の横断面の一例を示す図であ
る。FIG. 4 is a diagram showing an example of a cross section of a metal column of the present invention.
【図5】本発明の金属柱の横断面の他の例を示す図であ
る。FIG. 5 is a diagram showing another example of the cross section of the metal column of the present invention.
【図6】従来のフリップチップ用バンプ構造の一例を示
す図である。FIG. 6 is a view showing an example of a conventional flip-chip bump structure.
【図7】図6の例を適用したフリップチップの実装状態
を示す図である。7 is a diagram showing a mounted state of a flip chip to which the example of FIG. 6 is applied.
1 電極パッド 2 バリヤメタル 3 金属柱 4 コアバンプ 5 半田バンプ 6 半導体基板 7 絶縁膜 1 electrode pad 2 barrier metal 3 metal pillar 4 core bump 5 solder bump 6 semiconductor substrate 7 insulating film
Claims (1)
形成されるバンプの構造であって、半導体装置の電極パ
ッド上に積層したバリヤメタルと、該バリヤメタル上に
立設した複数の金属柱と、該複数の金属柱上にわたって
積層したコアバンプと、該コアバンプ上に積層した半田
バンプとからなることを特徴とするバンプ構造。1. A structure of a bump formed on an electrode part of a flip-chip type semiconductor device, comprising: a barrier metal laminated on an electrode pad of the semiconductor device; a plurality of metal pillars standing on the barrier metal; A bump structure comprising a core bump laminated on a plurality of metal columns and a solder bump laminated on the core bump.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7187887A JPH0917795A (en) | 1995-06-30 | 1995-06-30 | Bump structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7187887A JPH0917795A (en) | 1995-06-30 | 1995-06-30 | Bump structure |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0917795A true JPH0917795A (en) | 1997-01-17 |
Family
ID=16213937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7187887A Pending JPH0917795A (en) | 1995-06-30 | 1995-06-30 | Bump structure |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0917795A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100444163B1 (en) * | 2001-12-27 | 2004-08-11 | 동부전자 주식회사 | strengthen reliability for solder joint of semiconductor |
US7579692B2 (en) | 2000-09-04 | 2009-08-25 | Seiko Epson Corporation | Method for forming a bump, semiconductor device and method of fabricating same, semiconductor chip, circuit board, and electronic instrument |
-
1995
- 1995-06-30 JP JP7187887A patent/JPH0917795A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7579692B2 (en) | 2000-09-04 | 2009-08-25 | Seiko Epson Corporation | Method for forming a bump, semiconductor device and method of fabricating same, semiconductor chip, circuit board, and electronic instrument |
KR100444163B1 (en) * | 2001-12-27 | 2004-08-11 | 동부전자 주식회사 | strengthen reliability for solder joint of semiconductor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7098126B2 (en) | Formation of electroplate solder on an organic circuit board for flip chip joints and board to board solder joints | |
KR940001149B1 (en) | Chip bonding method of semiconductor device | |
JP3320979B2 (en) | How to mount a device directly on a device carrier | |
US7319276B2 (en) | Substrate for pre-soldering material and fabrication method thereof | |
JP4334647B2 (en) | Method for forming conductive bumps on a semiconductor device | |
JP3262497B2 (en) | Chip mounted circuit card structure | |
US4463059A (en) | Layered metal film structures for LSI chip carriers adapted for solder bonding and wire bonding | |
US7338891B2 (en) | Semiconductor chip, mounting structure thereof, and methods for forming a semiconductor chip and printed circuit board for the mounting structure thereof | |
JP4685834B2 (en) | Integrated circuit device | |
US7906425B2 (en) | Fluxless bumping process | |
US20070200251A1 (en) | Method of fabricating ultra thin flip-chip package | |
US20060201997A1 (en) | Fine pad pitch organic circuit board with plating solder and method for fabricating the same | |
US7501311B2 (en) | Fabrication method of a wafer structure | |
JP2007317979A (en) | Method for manufacturing semiconductor device | |
US6849534B2 (en) | Process of forming bonding columns | |
JP3563635B2 (en) | Semiconductor integrated circuit device and method of manufacturing the same | |
US20050026416A1 (en) | Encapsulated pin structure for improved reliability of wafer | |
JPH0945691A (en) | Solder bump for chip component and its manufacture | |
JPH0547842A (en) | Semiconductor device | |
JPH0917795A (en) | Bump structure | |
EP1322146A1 (en) | Method of electroplating solder bumps on an organic circuit board | |
JP5432543B2 (en) | Manufacturing method of semiconductor device | |
JP3201431B2 (en) | Manufacturing method of IC semiconductor device | |
JPH11233561A (en) | Mounting structure of semiconductor chip part | |
KR100726059B1 (en) | Electroplating solder formation on organic circuit boards for flip chip joints and board-to-face solder joints |