JP2000228373A - Manufacture of electrode - Google Patents

Manufacture of electrode

Info

Publication number
JP2000228373A
JP2000228373A JP11029480A JP2948099A JP2000228373A JP 2000228373 A JP2000228373 A JP 2000228373A JP 11029480 A JP11029480 A JP 11029480A JP 2948099 A JP2948099 A JP 2948099A JP 2000228373 A JP2000228373 A JP 2000228373A
Authority
JP
Japan
Prior art keywords
contact hole
barrier metal
electrode
forming
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11029480A
Other languages
Japanese (ja)
Inventor
Yasushi Igarashi
泰史 五十嵐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11029480A priority Critical patent/JP2000228373A/en
Publication of JP2000228373A publication Critical patent/JP2000228373A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)

Abstract

PROBLEM TO BE SOLVED: To attain an electrode that it is hard to be oxidized, if heated in the oxygen atmosphere and the electrical characteristics are not deteriorated by a method, wherein there is formed an electrode structure in which an electrode material other than a barrier metal material and the barrier metal material are embedded in a contact hole as a laminated structure. SOLUTION: This manufacturing method of an electrode includes the sequential steps of a step of forming an insulated film on a semiconductor substrate for flattening, a step of forming a contact hole 4 in an insulated film, a step of forming a first barrier metal 7Ir in the bottom part and the sidewall of the contact hole, a step of embedding the contact hole with a conductive material, a step of removing the conductive material by etchbacking to a desired thickness, and a step of embedding the contact hole with a second barrier metal. As a result, it is possible to attain an electrode structure, in which the conductive material other than a barrier metal material and the barrier metal material are embedded in the contact hole as a laminated structure.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はLSIに用いられる電
極の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode used in an LSI.

【0002】[0002]

【従来の技術】文献名:T.Kachi,K.Shoji,H.Yamashita,
T.Kisu,K.Torii, T.Kumihashi, Y.Fujisaki, and N.Yok
oyama, Proceedings of Symp. VLSI Tech., 1998, p.p.
126-127A Scalable Single-transistor / single-capac
itor Memory Cell Structure Characterized by an Ang
led-capacitor Layout for Megabit FeRAMs 上記文献には、1T-1C(1トランジスタ-1キャパシタ)
型の強誘電体メモリ(FeRAM)を0.5umのルールで、セルサ
イズ4.5um2を実現したことが開示されている。セルの構
造はスタック型であり、セルの配置に工夫が見られる。
[Prior Art] Reference: T. Kachi, K. Shoji, H. Yamashita,
T.Kisu, K.Torii, T.Kumihashi, Y.Fujisaki, and N.Yok
oyama, Proceedings of Symp.VLSI Tech., 1998, pp
126-127A Scalable Single-transistor / single-capac
itor Memory Cell Structure Characterized by an Ang
led-capacitor Layout for Megabit FeRAMs 1T-1C (1 transistor-1 capacitor)
It is disclosed that a cell size of 4.5 μm 2 was realized with a 0.5 μm rule for a ferroelectric memory (FeRAM) of the type. The structure of the cell is a stack type, and the arrangement of the cell is devised.

【0003】強誘電体キャパシタはPt(50nm)/PZT(150n
m)/Pt(200nm)/TiN(50nm)の積層構造を用いている。形成
方法は、積層構造のパターン側壁に残渣が残らないドラ
イエッチング方法で加工している。この強誘電体キャパ
シタは、ポリシリコンプラグで下部のMOSトランジスタ
と接続し、1T-1C型の強誘電体メモリを構成している。
A ferroelectric capacitor is Pt (50 nm) / PZT (150 n
m) / Pt (200 nm) / TiN (50 nm). The formation method is a dry etching method in which no residue remains on the pattern side wall of the laminated structure. This ferroelectric capacitor is connected to a lower MOS transistor by a polysilicon plug to constitute a 1T-1C type ferroelectric memory.

【0004】[0004]

【発明が解決しようとする課題】上述した従来の技術で
は、強誘電体膜であるPZTの焼成時の、酸素雰囲気中で
の熱処理で、ポリシリコンプラグが酸化して電気的な接
触不良にならないように、下部電極として膜厚の厚い積
層膜Pt(200nm)/TiN(50nm)を採用している。
In the above-mentioned conventional technique, the polysilicon plug is not oxidized by the heat treatment in the oxygen atmosphere at the time of firing the PZT, which is a ferroelectric film, so that electrical contact failure does not occur. As described above, a thick laminated film Pt (200 nm) / TiN (50 nm) is adopted as the lower electrode.

【0005】また、ドライエッチングで加工した強誘電
体キャパシタのパターン側壁は、基板に対して大きく傾
いた形状になる。その結果、強誘電体キャパシタである
Pt(50nm)/PZT(150nm)/Pt(200nm)/TiN(50nm)の積層構造
は、台形状を呈する。
The pattern side wall of the ferroelectric capacitor processed by dry etching has a shape that is greatly inclined with respect to the substrate. The result is a ferroelectric capacitor
The stacked structure of Pt (50 nm) / PZT (150 nm) / Pt (200 nm) / TiN (50 nm) has a trapezoidal shape.

【0006】このため、膜厚が厚い下部電極により、パ
ターン側壁(上述した台形の底辺近傍)の張り出しが大
きくなり、集積度を上げにくいという問題点があった。
For this reason, there is a problem that the lower electrode having a large film thickness causes the overhang of the pattern side wall (near the bottom of the trapezoid described above) to be increased, and it is difficult to increase the degree of integration.

【0007】[0007]

【課題を解決するための手段】半導体基板上に絶縁膜を
形成して平坦化する工程と、絶縁膜にコンタクトホール
を形成する工程と、コンタクトホールの底部と側壁に第
1のバリアメタルを形成する工程と、コンタクトホール
を導電性の材料で埋め込む工程と、エッチバックによっ
て導電性材料を所望の厚さだけ除去する工程と、コンタ
クトホールを第2のバリアメタルで埋め込む工程とを順
次行うようにしたため、コンタクトホール内にバリアメ
タル材料以外の導電性材料とバリアメタル材料を積層構
造で埋め込んだ電極構造が得られる。
A process for forming an insulating film on a semiconductor substrate and planarizing the same, a process for forming a contact hole in the insulating film, and forming a first barrier metal on the bottom and side walls of the contact hole. And a step of filling the contact hole with a conductive material, a step of removing the conductive material by a desired thickness by etch back, and a step of filling the contact hole with a second barrier metal. As a result, an electrode structure in which a conductive material other than the barrier metal material and a barrier metal material are embedded in the contact hole in a laminated structure is obtained.

【0008】また、この電極を酸素雰囲気中で熱処理し
ても、酸化されにくく電気特性は劣化しない。従って、
強誘電体キャパシタを本発明により作成された電極上に
積層させる場合でも、キャパシタの電極(特に下層の電
極)を厚膜化する必要がなく、強誘電体キャパシタ側壁
の張り出しを小さくできる。よって、上記問題点を除去
できるのである。
Further, even if this electrode is heat-treated in an oxygen atmosphere, it is hardly oxidized and the electric characteristics are not deteriorated. Therefore,
Even when the ferroelectric capacitor is laminated on the electrode formed according to the present invention, it is not necessary to increase the thickness of the electrode of the capacitor (especially, the lower electrode), and the protrusion of the side wall of the ferroelectric capacitor can be reduced. Therefore, the above problem can be eliminated.

【0009】[0009]

【実施の形態】本発明は、集積度を上げるのに適した電
極の製造方法について述べる。本発明の実施例では、容
量素子の電極を挙げて説明するが、これに限るものでは
ない。本容量素子は回路構成としてMOSトランジスタな
どの制御素子と共に使用するものを想定している。ま
た、素子の構造はスタック構造と呼ばれるもので、本容
量素子の下部にある制御素子との接続を、本容量素子の
下部電極の下面で行うものとする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention describes a method of manufacturing an electrode suitable for increasing the degree of integration. In the embodiment of the present invention, the electrode of the capacitor will be described, but the present invention is not limited to this. The present capacitance element is assumed to be used together with a control element such as a MOS transistor as a circuit configuration. Further, the structure of the element is called a stack structure, and connection with a control element below the present capacitive element is performed on the lower surface of the lower electrode of the present capacitive element.

【0010】本発明の電極はタングステンによるプラグ
とその上部に形成したバリアメタルからなり、このバリ
アメタルにより酸素の拡散を抑制しタングステンの酸化
を防ぐ。そして、このバリアメタルの上部に容量素子が
配置される。容量素子は、下部電極と上部電極の間に誘
電体材料を配置したものである。本実施例での容量素子
は、下部電極と上部電極の材料にIrO2、誘電体材料に強
誘電体であるSrBi2Ta2O9(SBT)を使用した例を挙げる
が、材料はこれに限るものではない。
The electrode of the present invention comprises a plug made of tungsten and a barrier metal formed on the plug. The barrier metal suppresses diffusion of oxygen and prevents oxidation of tungsten. Then, a capacitive element is arranged above the barrier metal. The capacitance element has a dielectric material disposed between a lower electrode and an upper electrode. The capacitive element in the present embodiment uses IrO 2 for the material of the lower electrode and the upper electrode, and an example in which SrBi 2 Ta 2 O 9 (SBT), which is a ferroelectric, is used for the dielectric material. It is not limited.

【0011】<実施例>以下に本発明の一例を挙げ、図
面を参照しながら説明する。ここでは、MOSトランジス
タを形成後に層間絶縁膜が形成され表面の凹凸を減らす
ための平坦化処理を施し、容量素子形成前の工程から説
明する。
<Example> An example of the present invention will be described below with reference to the drawings. Here, a description will be given from the step before the formation of the capacitive element, in which an interlayer insulating film is formed after the MOS transistor is formed, and a flattening process is performed to reduce surface unevenness.

【0012】まず図1(a)に示す通り、あらかじめ平坦化
した層間絶縁膜(3)の所望の部分に既知のホトリソグラ
フィーとドライエッチングにより、コンタクトホール
(4)を開口し、例えばMOSトランジスタのソースまたはド
レイン領域(2)を露出させる。
First, as shown in FIG. 1A, a contact hole is formed in a desired portion of an interlayer insulating film (3) which has been planarized in advance by known photolithography and dry etching.
Open (4) to expose, for example, the source or drain region (2) of the MOS transistor.

【0013】次に図1(b)に示す通り、Tiからなるターゲ
ットを用いて、Arを導入したスパッタ法によりTiを0.05
um形成し、N2中で急速加熱法による窒化処理(RTN)を行
い750℃、30秒でTiN(5)を基板上全面に形成する。この
時、コンタクトホール(4)の底部と、側壁にもTiN(5)が
形成される。
Next, as shown in FIG. 1 (b), using a target made of Ti, 0.05
Then, TiN (5) is formed on the entire surface of the substrate at 750 ° C. for 30 seconds by performing a nitriding treatment (RTN) by a rapid heating method in N 2 . At this time, TiN (5) is also formed on the bottom and side walls of the contact hole (4).

【0014】次に図1(c)に示す通り、既知のCVD法によ
りタングステン(W)を基板上全面に成膜しコンタクトホ
ール(4)をW(6)で埋める。この時、TiN(5)を介して層間
絶縁膜(3)上にもW(6)が形成される。
Next, as shown in FIG. 1C, tungsten (W) is formed on the entire surface of the substrate by a known CVD method, and the contact hole (4) is filled with W (6). At this time, W (6) is also formed on the interlayer insulating film (3) via the TiN (5).

【0015】次に図2(d)に示す通り、過酸化水素水をベ
ースに使用したスラリーを使い、研磨パッドとして比較
的硬度の高いパッド、例えばロデール・ニッタ社のIC14
00を使った化学的機械研磨法(CMP: chemical mechanica
l polishing)でコンタクトホール(4)以外のWおよびTiN
を除去して平坦化する。
Next, as shown in FIG. 2 (d), using a slurry using a hydrogen peroxide solution as a base, a pad having relatively high hardness as a polishing pad, for example, IC14 manufactured by Rodale Nitta Co., Ltd.
Chemical mechanical polishing using CMP (CMP: chemical mechanica
l polishing and W and TiN other than contact hole (4)
Is removed and flattened.

【0016】次に図2(e)に示す通り、W(6)のドライエッ
チングを行い、コンタクトホール(4)内のW(6)を例えば
深さ0.2umまでエッチバックする。
Next, as shown in FIG. 2E, W (6) is dry-etched, and W (6) in the contact hole (4) is etched back to a depth of, for example, 0.2 μm.

【0017】次に図2(f)に示す通り、バリアメタルとし
て使用するIr(7)をスパッタにより基板上全面に、膜厚
0.2um成膜する。この時、コンタクトホールはエッチバ
ックしたW(6)の深さとほぼ同等もしくはそれ以上の膜厚
でIr(7)により埋め込まれていればよい。つまりコンタ
クトホールはIr(7)により必ずしも完全に埋め込まれて
いる必要はなく、Ir(7)の膜厚0.2umはあくまで一例にす
ぎない。
Next, as shown in FIG. 2 (f), Ir (7) used as a barrier metal is deposited on the entire surface of the substrate by sputtering.
Deposit 0.2um. At this time, the contact hole may be filled with Ir (7) with a thickness substantially equal to or greater than the depth of the etched back W (6). That is, the contact hole does not necessarily need to be completely filled with Ir (7), and the thickness of 0.2 μm of Ir (7) is only an example.

【0018】次に図3(g)に示す通り、スラリーを使わず
純水を滴下しながら、研磨パッドとして比較的硬度の低
いパッド、例えばロデール・ニッタ社のSuba400を使っ
たCMPでコンタクトホール(4)以外のIrを除去する。この
Irの除去は、Irと層間絶縁膜(3)の構成材料であるSiO2
との密着性が悪く容易に剥離することと、IrとWは合金
化しやすいため密着性が高いこととを利用している。
Next, as shown in FIG. 3 (g), the contact hole is formed by a CMP using a pad having relatively low hardness as a polishing pad, for example, Suba400 manufactured by Rodale Nitta while dropping pure water without using a slurry. Remove Ir except 4). this
Ir removal is performed by using SiO 2 which is a constituent material of Ir and the interlayer insulating film (3).
This is because Ir and W are easily peeled off due to poor adhesion, and that Ir and W are easily alloyed and therefore have high adhesion.

【0019】次に図3(h)に示す通り、スクラブ洗浄を行
い、パーティクルを除去した後で、アンモニアをベース
に使用したスラリーを使い、研磨パッドとして比較的硬
度の高いパッド、例えばロデール・ニッタ社のIC1400を
使ったCMPにより、露出した酸化膜の表面を研磨し、前
の工程で入った傷とIr(7)の表面の凹凸を除去する。
Next, as shown in FIG. 3 (h), after scrub cleaning is performed to remove particles, a relatively hard pad such as Rodale Nitta is used as a polishing pad using a slurry based on ammonia. The surface of the exposed oxide film is polished by CMP using IC1400, and the scratches formed in the previous step and the irregularities on the Ir (7) surface are removed.

【0020】次に図3(i)に示す通り、容量素子の積層構
造IrO2/SBT/IrO2を形成する。本実施例では、Sol-Gel
(ゾルゲル)法などでSBT膜(8)を形成するため、仮焼成
として酸素雰囲気中で例えば450℃、1時間の熱処理、
および本焼成として酸素雰囲気中で例えば750℃、1時
間の熱処理が必要である。このとき下部電極であるIrO2
(9)を通して酸素が拡散するが、Ir(7)がバリアメタルと
して形成されているためWプラグ(6)は酸化されない。よ
って上層に強誘電体キャパシタを積層させるときでも、
キャパシタの下部電極を厚膜化する必要がない。従っ
て、キャパシタの下部電極の横方向への張り出しの少な
い、高集積化に好適な電極構造が実現できるのである。
Next, as shown in FIG. 3I, a laminated structure IrO 2 / SBT / IrO 2 of the capacitive element is formed. In this embodiment, Sol-Gel
In order to form the SBT film (8) by the (sol-gel) method, for example, heat treatment at 450 ° C. for 1 hour in an oxygen atmosphere
In addition, heat treatment, for example, at 750 ° C. for one hour in an oxygen atmosphere is required as the main firing. At this time, the lower electrode IrO 2
Although oxygen diffuses through (9), the W plug (6) is not oxidized because Ir (7) is formed as a barrier metal. Therefore, even when a ferroelectric capacitor is laminated on the upper layer,
It is not necessary to increase the thickness of the lower electrode of the capacitor. Therefore, it is possible to realize an electrode structure suitable for high integration, in which the lower electrode of the capacitor has little overhang in the lateral direction.

【0021】本実施例ではバリアメタルとしてIrを用い
た例を載せたが、Irを含む合金、若しくはIrを含む化合
物でも同様に用いることが出来る。また、従来技術の説
明で判るように酸素の拡散バリアとしてPtを使用する場
合があるが、PtもSiO2との密着性が悪く容易に剥離する
ことが知られており、本実施例の製造方法及び構造をP
t、Ptを含む合金、若しくはPtを含む化合物で実現する
ことが出来ることは自明である。
In this embodiment, an example using Ir as a barrier metal is described, but an alloy containing Ir or a compound containing Ir can be used in the same manner. In addition, as can be seen from the description of the prior art, Pt may be used as a diffusion barrier for oxygen, but it is known that Pt also has poor adhesion to SiO 2 and easily peels off. Method and structure P
Obviously, it can be realized by an alloy containing t or Pt, or a compound containing Pt.

【0022】本実施例の電極は、バリアメタルの加工に
CMPを使用したダマシンプロセスを使用したため、絶縁
膜に開口したコンタクトホールの形状でバリアメタルの
形状が決まる。また、ドライエッチングしにくいバリア
メタル材料でも微細加工が可能である。
The electrode of this embodiment is used for processing a barrier metal.
Since the damascene process using CMP is used, the shape of the barrier metal is determined by the shape of the contact hole opened in the insulating film. Further, fine processing is possible even with a barrier metal material that is difficult to dry-etch.

【0023】[0023]

【発明の効果】以上、実施例を挙げて詳細に説明したよ
うに、本発明の電極構造では、コンタクトホールにバリ
アメタル材料以外の電極材料とバリアメタル材料を積層
構造で埋め込んだ電極構造を形成することが可能にな
る。
As described above in detail with reference to the embodiments, in the electrode structure of the present invention, an electrode structure in which an electrode material other than a barrier metal material and a barrier metal material are embedded in a contact hole in a laminated structure is formed. It becomes possible to do.

【0024】また、本発明により作成された電極構造
を、酸素雰囲気中で熱処理しても電極は酸化されにく
く、電気特性も劣化しない。従って、例えば強誘電体キ
ャパシタを本発明により作成された電極構造の上に積層
させる場合でも、キャパシタの電極(特に下部電極)を
厚膜化する必要がなく、パターン側壁の張り出しを小さ
くすることができ、集積度を上げることが可能になる。
Further, even if the electrode structure manufactured according to the present invention is heat-treated in an oxygen atmosphere, the electrode is hardly oxidized and the electric characteristics are not deteriorated. Therefore, even when, for example, a ferroelectric capacitor is laminated on the electrode structure formed according to the present invention, it is not necessary to increase the thickness of the capacitor electrode (particularly, the lower electrode), and it is possible to reduce the protrusion of the pattern side wall. And the degree of integration can be increased.

【0025】更に、ドライエッチングしにくいバリアメ
タル材料でもパターンエッジを基板にほぼ垂直にするこ
とができるため、微細化に適した構造が実現できる。
Furthermore, even with a barrier metal material that is difficult to dry-etch, the pattern edge can be made substantially perpendicular to the substrate, so that a structure suitable for miniaturization can be realized.

【0026】これにより酸素中で高温処理が必要なスタ
ック型のFeRAM用の強誘電体キャパシタやDRAM用キャパ
シタが電極の特性を劣化させることなく実現できる。
Thus, a stacked ferroelectric capacitor for FeRAM or a capacitor for DRAM requiring high-temperature treatment in oxygen can be realized without deteriorating the characteristics of the electrodes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例の説明図(1)である。FIG. 1 is an explanatory diagram (1) of an embodiment of the present invention.

【図2】図1に続く、本発明の実施例(2)である。FIG. 2 is an embodiment (2) of the present invention following FIG. 1;

【図3】図2に続く、本発明の実施例(3)である。FIG. 3 is an embodiment (3) of the present invention following FIG. 2;

【符号の説明】[Explanation of symbols]

(1)ゲート (2)ソース・ドレイン領域 (3)層間絶縁膜 (4)コンタクトホール (5)TiN (6)W (7)Ir (8)SBT (9)(10)IrO (1) Gate (2) Source / drain region (3) Interlayer insulating film (4) Contact hole (5) TiN (6) W (7) Ir (8) SBT (9) (10) IrO 2

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 21/8242 H01L 29/78 371 21/8247 29/788 29/792 Fターム(参考) 4M104 BB30 CC01 DD08 DD37 DD43 DD65 DD75 DD80 DD86 FF17 FF18 FF22 GG09 GG16 HH14 HH20 5F001 AA17 AB02 AD04 AD33 AF06 AG29 AG30 5F038 AC09 AC15 CD18 DF05 EZ01 EZ11 5F083 BS25 BS48 FR02 GA09 JA17 JA38 JA39 JA40 JA43 MA05 MA06 MA17 PR03 PR16 PR21 PR22 PR39 PR40 PR45 PR48──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) H01L 21/8242 H01L 29/78 371 21/8247 29/788 29/792 F term (Reference) 4M104 BB30 CC01 DD08 DD37 DD43 DD65 DD75 DD80 DD86 FF17 FF18 FF22 GG09 GG16 HH14 HH20 5F001 AA17 AB02 AD04 AD33 AF06 AG29 AG30 5F038 AC09 AC15 CD18 DF05 EZ01 EZ11 5F083 BS25 BS48 FR02 GA09 JA17 JA38 JA39 JA40 PR43 PR05 PR06

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板上に絶縁膜を形成して平坦化
する工程と、前記絶縁膜にコンタクトホールを形成する
工程と、前記コンタクトホールの底部と側壁に第1のバ
リアメタルを形成する工程と、前記コンタクトホールを
導電性の材料で埋め込む工程と、エッチバックによって
前記導電性材料を所望の厚さだけ除去する工程と、前記
コンタクトホールを第2のバリアメタルで埋め込む工程
とを順次行うことを特徴とする電極の製造方法。
1. A step of forming an insulating film on a semiconductor substrate for planarization, a step of forming a contact hole in the insulating film, and a step of forming a first barrier metal on a bottom and a side wall of the contact hole. Sequentially embedding the contact hole with a conductive material, removing the conductive material by a desired thickness by etch back, and embedding the contact hole with a second barrier metal. A method for producing an electrode, comprising:
【請求項2】 半導体基板上に電界効果トランジスタを
形成する工程と、前記半導体基板上に層間絶縁膜を形成
して平坦化する工程と、前記層間絶縁膜にコンタクトホ
ールを形成し前記電界効果トランジスタのソース・ドレ
インの一方を露出させる工程と、第1のバリアメタルを
前記半導体上全面に形成して前記コンタクトホールの側
壁と底部及び前記層間絶縁膜に被着させる工程と、前記
半導体基板上全面に導電性材料を堆積させ前記コンタク
トホールを完全に埋め込む工程と、化学機械研磨法によ
り前記第1のバリアメタルと前記導電性材料とを前記コ
ンタクトホール内部を除き除去する工程と、エッチバッ
クによって前記コンタクトホール内の前記導電性材料を
所望の厚さだけ除去する工程と、前記半導体基板上全面
に前記エッチバックした前記導電性材料の除去された厚
さとほぼ同等もしくはそれ以上の厚さだけ第2のバリア
メタルを形成する工程と、前記コンタクトホールの内部
を除き前記化学機械研磨法により前記第2のバリアメタ
ルを除去する工程とを順次行うことを特徴とする電極の
製造方法。
2. A step of forming a field effect transistor on a semiconductor substrate, a step of forming an interlayer insulating film on the semiconductor substrate to planarize the field effect transistor, and forming a contact hole in the interlayer insulating film to form the field effect transistor. Exposing one of the source and the drain of the contact hole, forming a first barrier metal on the entire surface of the semiconductor, and attaching the first barrier metal to the side wall and the bottom of the contact hole and the interlayer insulating film; Depositing a conductive material to completely fill the contact hole, removing the first barrier metal and the conductive material except for the inside of the contact hole by a chemical mechanical polishing method, and etching back by etching back. Removing the conductive material in a contact hole by a desired thickness, and etching back the entire surface of the semiconductor substrate. Forming a second barrier metal with a thickness substantially equal to or greater than the thickness of the conductive material removed; and excluding the inside of the contact hole, the second barrier metal is formed by the chemical mechanical polishing method. And a step of sequentially removing the same.
【請求項3】 請求項1または2記載の電極の製造方法
であって、前記第1のバリアメタルがTiNであることを
特徴とする電極の製造方法。
3. The method for manufacturing an electrode according to claim 1, wherein the first barrier metal is TiN.
【請求項4】 請求項1または2記載の電極の製造方法
であって、前記第2のバリアメタルがIr、Irとの合金、
若しくはIrとの化合物であることを特徴とする電極の製
造方法。
4. The method for manufacturing an electrode according to claim 1, wherein the second barrier metal is Ir, an alloy with Ir,
Alternatively, a method for producing an electrode, which is a compound with Ir.
【請求項5】 請求項1または2記載の電極の製造方法
であって、前記第2のバリアメタルがPt、Ptとの合金、
若しくはPtとの化合物であることを特徴とする電極の製
造方法。
5. The method for manufacturing an electrode according to claim 1, wherein the second barrier metal is Pt, an alloy with Pt,
Alternatively, a method for producing an electrode, which is a compound with Pt.
【請求項6】 請求項1または2記載の電極の製造方法
であって、前記導電性材料がWであることを特徴とする
電極の製造方法。
6. The method for manufacturing an electrode according to claim 1, wherein the conductive material is W.
JP11029480A 1999-02-08 1999-02-08 Manufacture of electrode Pending JP2000228373A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11029480A JP2000228373A (en) 1999-02-08 1999-02-08 Manufacture of electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11029480A JP2000228373A (en) 1999-02-08 1999-02-08 Manufacture of electrode

Publications (1)

Publication Number Publication Date
JP2000228373A true JP2000228373A (en) 2000-08-15

Family

ID=12277261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11029480A Pending JP2000228373A (en) 1999-02-08 1999-02-08 Manufacture of electrode

Country Status (1)

Country Link
JP (1) JP2000228373A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349255A (en) * 1999-06-03 2000-12-15 Oki Electric Ind Co Ltd Semiconductor storage device and method of manufacturing the same
JP2001284548A (en) * 2000-03-31 2001-10-12 Fujitsu Ltd Semiconductor memory device and method of manufacturing the same
JP2002083940A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Semiconductor device and manufacturing method thereof
JP2004508708A (en) * 2000-08-31 2004-03-18 マイクロン テクノロジー インコーポレイテッド Flattening of the metal container structure
JP2006066796A (en) * 2004-08-30 2006-03-09 Seiko Epson Corp Ferroelectric memory and manufacturing method thereof
JP2007201042A (en) * 2006-01-25 2007-08-09 Seiko Epson Corp Semiconductor device
JP2010206213A (en) * 2010-05-10 2010-09-16 Fujitsu Semiconductor Ltd Semiconductor device, and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000349255A (en) * 1999-06-03 2000-12-15 Oki Electric Ind Co Ltd Semiconductor storage device and method of manufacturing the same
JP2001284548A (en) * 2000-03-31 2001-10-12 Fujitsu Ltd Semiconductor memory device and method of manufacturing the same
JP2004508708A (en) * 2000-08-31 2004-03-18 マイクロン テクノロジー インコーポレイテッド Flattening of the metal container structure
JP2002083940A (en) * 2000-09-07 2002-03-22 Hitachi Ltd Semiconductor device and manufacturing method thereof
JP2006066796A (en) * 2004-08-30 2006-03-09 Seiko Epson Corp Ferroelectric memory and manufacturing method thereof
JP2007201042A (en) * 2006-01-25 2007-08-09 Seiko Epson Corp Semiconductor device
JP2010206213A (en) * 2010-05-10 2010-09-16 Fujitsu Semiconductor Ltd Semiconductor device, and manufacturing method thereof

Similar Documents

Publication Publication Date Title
KR100230418B1 (en) Platinum group metal layer formation method and capacitor manufacturing method using the same
JP2682392B2 (en) Thin film capacitor and method of manufacturing the same
US6538272B2 (en) Semiconductor storage device and method of producing same
JP2002009256A (en) Semiconductor device and manufacturing method thereof
JP2002141412A (en) Manufacturing method of conductive connection
US6291250B1 (en) Method for manufacturing semiconductor memory device
CN100555637C (en) Semiconductor device and manufacture method thereof
JP2010016036A (en) Semiconductor device, and method for manufacturing the same
KR100504693B1 (en) Ferroelectric memory device and method for fabricating the same
JP2000228373A (en) Manufacture of electrode
JP4549937B2 (en) Manufacturing method of semiconductor device
JPH10223855A (en) Semiconductor memory device and method of manufacturing semiconductor memory device
JP2004134692A (en) Semiconductor memory device and method of manufacturing the same
US20220209112A1 (en) Resistive random access memory (rram) structure and forming method thereof
JP2005116675A (en) Semiconductor device and manufacturing method thereof
JP2002343887A (en) Capacitor manufacturing method
JP2001274352A (en) Semiconductor device and its manufacturing method
KR100529381B1 (en) Method for forming capacitor bottom electrode of semiconductor device by using blanket etch and polishing
KR100605231B1 (en) ME capacitor formation method of semiconductor device
KR19980037162A (en) Ferroelectric Capacitor Manufacturing Method
KR100529380B1 (en) Method for forming capacitor bottom electrode of semiconductor device by using oxidation and polishing
KR100463240B1 (en) Method for fabrication of ferroelectric random access memory device
KR100542498B1 (en) ME capacitor formation method of semiconductor device
KR100529392B1 (en) Method of manufacturing ferroelectric memory device
KR100972553B1 (en) Capacitor of ferroelectric memory device and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060117

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060923

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060929

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204