CN101419764A - Automatic experiment system for bridge type crane - Google Patents
Automatic experiment system for bridge type crane Download PDFInfo
- Publication number
- CN101419764A CN101419764A CNA2008101523523A CN200810152352A CN101419764A CN 101419764 A CN101419764 A CN 101419764A CN A2008101523523 A CNA2008101523523 A CN A2008101523523A CN 200810152352 A CN200810152352 A CN 200810152352A CN 101419764 A CN101419764 A CN 101419764A
- Authority
- CN
- China
- Prior art keywords
- crane
- control
- bridge type
- bridge
- slide rail
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002474 experimental method Methods 0.000 title claims abstract description 20
- 238000004088 simulation Methods 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 230000005540 biological transmission Effects 0.000 claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 239000000956 alloy Substances 0.000 claims description 3
- 229910001095 light aluminium alloy Inorganic materials 0.000 claims description 2
- 238000005336 cracking Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 5
- 230000001360 synchronised effect Effects 0.000 description 15
- 239000000725 suspension Substances 0.000 description 13
- 229910000831 Steel Inorganic materials 0.000 description 9
- 239000010959 steel Substances 0.000 description 9
- 238000011160 research Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 3
- 230000032258 transport Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003638 chemical reducing agent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Landscapes
- Control And Safety Of Cranes (AREA)
Abstract
本发明公开了一种桥式吊车自动控制实验系统,包括有实际桥式吊车模拟装置、吊车状态测量装置以及吊车控制装置,其中,桥式吊车模拟装置,用于模拟实际桥式吊车系统的结构,它是整个实验系统的控制对象;吊车状态测量装置,用于实时测量所述桥式吊车模拟装置的状态量信息,并发送给吊车控制装置;吊车控制装置,用于接收吊车状态测量装置所测量的桥式吊车模拟装置的状态量信息,并根据该状态量信息,按照预定的控制方法实时地计算出相应的控制信号,然后将控制信号发送到桥式吊车模拟装置,从而使得控制桥式吊车模拟装置的按预定要求运行。本发明真实反映桥式吊车的运动学、动力学特性,能够验证现有的不同吊车控制方法的实际效果。
The invention discloses an automatic control experiment system of a bridge crane, which includes an actual bridge crane simulation device, a crane state measurement device and a crane control device, wherein the bridge crane simulation device is used to simulate the structure of the actual bridge crane system , which is the control object of the entire experimental system; the crane state measurement device is used to measure the state quantity information of the bridge crane simulation device in real time and sends it to the crane control device; the crane control device is used to receive the information from the crane state measurement device Measure the state quantity information of the bridge crane simulation device, and according to the state quantity information, calculate the corresponding control signal in real time according to the predetermined control method, and then send the control signal to the bridge crane simulation device, so that the control bridge crane The operation of the crane simulator is as scheduled. The invention truly reflects the kinematics and dynamic characteristics of the bridge crane, and can verify the actual effects of different existing crane control methods.
Description
技术领域 technical field
本发明涉及非线性欠驱动系统自动控制的技术领域,特别是涉及一种桥式吊车自动控制实验系统。The invention relates to the technical field of automatic control of nonlinear underactuated systems, in particular to an automatic control experiment system for bridge cranes.
背景技术 Background technique
众所周知,桥式吊车是一种十分常见的装配运输工具,它利用绳索将负载与吊车上的台车相连,并通过台车的运动来将负载运送到指定的位置,桥式吊车在港口、仓库、建筑工地等场所得到了广泛的应用。As we all know, an overhead crane is a very common assembly transportation tool. It uses ropes to connect the load to the trolley on the crane, and transports the load to the designated location through the movement of the trolley. The overhead crane is used in ports, warehouses, etc. , Construction sites and other places have been widely used.
鉴于桥式吊车在运行时,吊车上台车的运动会引起负载的摆动,使得负载可能会和周围的操作工人或者是其它物体发生碰撞,致使负载损坏,甚至导致发生人员伤亡事故,尤其是当台车到达指定位置停止运行后,吊车所悬挂的负载会发生比较强烈的残余摆动,这样不仅会带来较大的安全隐患,同时也严重影响了吊车的工作效率。因此,为了有效避免安全隐患,提高吊车的工作效率,在操作吊车时,一方面需要实现台车的快速准确定位,以满足准确运送负载的要求;另一方面,需要有效地抑制负载的摆动,实现负载的“无摆”或者“微摆”操作。特别是当台车到达指定位置时,负载必须很快地停止摆动,以期提高吊车的工作效率。In view of the fact that when the bridge crane is running, the movement of the trolley on the crane will cause the load to swing, so that the load may collide with the surrounding operators or other objects, resulting in damage to the load and even casualties, especially when the trolley After arriving at the designated position and stopping operation, the load suspended by the crane will have a relatively strong residual swing, which will not only bring a greater safety hazard, but also seriously affect the working efficiency of the crane. Therefore, in order to effectively avoid potential safety hazards and improve the working efficiency of the crane, when operating the crane, on the one hand, it is necessary to realize the rapid and accurate positioning of the trolley to meet the requirements of accurately transporting the load; on the other hand, it is necessary to effectively suppress the swing of the load, Realize the "no swing" or "micro swing" operation of the load. Especially when the trolley reaches the designated position, the load must stop swinging quickly in order to improve the working efficiency of the crane.
目前,为了满足台车的快速准确定位和有效地抑制负载的摆动这两方面的吊车操作要求,一般是通过有经验的工人操纵吊车来实现,具体在操作过程中,工人需要利用他们的经验并通过其眼睛的观测来估计台车的位置与摆角大小,然后选择合理的动作序列来有效抑制负载的摆动,并尽快将它运送到指定的位置,所以一个工人只有在具备多年吊车操作经验,并且掌握娴熟的吊车操作技巧之后,才能利用吊车快速地将负载运送到指定的位置,并有效地抑制负载的摆动。At present, in order to meet the crane operation requirements of fast and accurate positioning of the trolley and effectively suppressing the swing of the load, it is generally achieved by experienced workers operating the crane. Specifically, during the operation, workers need to use their experience and Estimate the position and swing angle of the trolley through the observation of its eyes, and then choose a reasonable action sequence to effectively suppress the swing of the load and transport it to the designated position as soon as possible. Therefore, a worker can only work with cranes for many years. And only after mastering the skilled crane operation skills can the crane be used to quickly transport the load to the designated position and effectively restrain the swing of the load.
一般来说,为了实现吊车系统的安全操作,吊车操作人员需要接受很长时间的培训,并在操作过程中不断总结经验以及吸取各种教训,因此,现有的吊车系统对吊车操作人员的技能要求偏高,一般的吊车操作人员无法实现吊车系统的安全操作。此外,鉴于吊车操作者在吊车操作过程中的劳动强度较大,使得吊车的工作效率偏低,吊车操作的准确度有时也难以满足要求。Generally speaking, in order to realize the safe operation of the crane system, the crane operators need to receive a long period of training, and constantly sum up experience and learn various lessons during the operation process. The requirements are too high, and the general crane operators cannot realize the safe operation of the crane system. In addition, due to the high labor intensity of the crane operator during the crane operation, the work efficiency of the crane is relatively low, and the accuracy of the crane operation is sometimes difficult to meet the requirements.
虽然国内外自动化领域的许多学者针对桥式吊车系统开展了大量研究,针对这种欠驱动系统提出了多种不同的控制方法,力图实现桥式吊车的安全、高效运输,但是目前还没有开发出一种方便、可靠的桥式吊车自动控制实验系统,其可以真实地反映桥式吊车的运动学、动力学特性,验证这些不同的吊车控制方法的实际控制效果,推动这些吊车控制方法在实际生产生活中的普及应用。Although many scholars in the field of automation at home and abroad have carried out a lot of research on the bridge crane system, and proposed a variety of different control methods for this underactuated system, trying to realize the safe and efficient transportation of the bridge crane, but there is no developed system yet. A convenient and reliable overhead crane automatic control experimental system, which can truly reflect the kinematics and dynamics characteristics of the overhead crane, verify the actual control effects of these different crane control methods, and promote these crane control methods in actual production Popular applications in daily life.
发明内容 Contents of the invention
有鉴于此,本发明的目的是提供一种桥式吊车自动控制实验系统,可以真实地反映桥式吊车的运动学、动力学特性,并方便进行控制器替换,能够对现有的各种不同的吊车控制方法的实际效果进行验证,推动吊车控制方法在实际生产生活中的普及应用。In view of this, the purpose of the present invention is to provide an automatic control experiment system for bridge cranes, which can truly reflect the kinematics and dynamic characteristics of bridge cranes, and facilitate the replacement of controllers, and can be used for various existing The actual effect of the crane control method is verified to promote the popularization and application of the crane control method in actual production and life.
为此,本发明提供了一种桥式吊车自动控制实验系统,包括有实际桥式吊车模拟装置、吊车状态测量装置以及吊车控制装置,其中:For this reason, the present invention provides a kind of overhead crane automatic control experimental system, including actual overhead crane simulation device, crane state measurement device and crane control device, wherein:
桥式吊车模拟装置,用于模拟实际桥式吊车系统的结构,它是整个实验系统的控制对象;The bridge crane simulation device is used to simulate the structure of the actual bridge crane system, which is the control object of the whole experimental system;
吊车状态测量装置,用于实时测量所述桥式吊车模拟装置的状态量信息,并发送给吊车控制装置;The crane state measurement device is used to measure the state quantity information of the bridge crane simulation device in real time and send it to the crane control device;
吊车控制装置,用于接收吊车状态测量装置所测量的桥式吊车模拟装置的状态量信息,并根据该状态量信息,按照预定的控制方法实时地计算出相应的控制信号,然后将控制信号发送到桥式吊车模拟装置,从而使得控制桥式吊车模拟装置的按预定要求运行。The crane control device is used to receive the state quantity information of the bridge crane simulation device measured by the crane state measurement device, calculate the corresponding control signal in real time according to the predetermined control method according to the state quantity information, and then send the control signal to To the bridge crane simulation device, so as to control the operation of the bridge crane simulation device according to the predetermined requirements.
优选地,所述桥式吊车模拟装置包括有吊车模拟机械主体和驱动装置,其中,Preferably, the bridge crane simulation device includes a crane simulation mechanical main body and a driving device, wherein,
所述吊车模拟机械主体,用于模拟实际桥式吊车系统的具体结构,以进行吊车的各种控制方式操作;所述驱动装置,用于接收吊车控制装置发出的控制信号,为所述吊车模拟机械主体进行吊车的各种控制方式操作提供驱动力。The main body of the crane simulation machine is used to simulate the specific structure of the actual bridge crane system to operate in various control modes of the crane; The main body of the machine performs various control modes of the crane to provide driving force.
优选地,所述吊车模拟机械主体包括有:支撑框架1、桥架2、第一滑轨31、第二滑轨32、台车4、设置在台车4上的卷轴5、支撑脚6以及负载7,所述支撑框架1是由12根硬质金属管焊接而成的中空长方体,所述支撑脚6安装在所述支撑框架1的底部四个角,所述支撑框架1的上部支撑框的y方向上安装有两条平行的第一滑轨31,所述桥架2可滑动地安装在所述第一滑轨31上,所述桥架2的x方向上安装有两条平行的第二滑轨32,所述台车4可滑动地安装在所述第二滑轨32上,所述台车4上面安装有用于升降负载7的钢丝绳卷轴5,所述第一滑轨31和/或第二滑轨32为吊轮滑轨,所述桥架2和台车4采用轻质铝合金材料制成。Preferably, the main body of the crane simulation machine includes: a support frame 1, a bridge frame 2, a first slide rail 31, a second slide rail 32, a
优选地,所述卷轴5包括有:传动内轴51、销52、传动轴套53、绞盘54、丝杠55、支撑轴承56、支撑轴承架57、钢丝吊绳58,所述传动轴套53、绞盘54和丝杠55固定连接在一起,所述钢丝吊绳58在所述绞盘54上进行单层盘绕且一端悬挂有所述负载7,所述支撑轴承架57用于支撑所述支撑轴承56,所述支撑轴承56与丝杠55螺纹咬合连接,所述销52贯穿传动内轴51和传动轴套53上的两侧孔59,所述传动内轴51与一个电机连接,所述传动轴套53上的两侧孔59是两条水平方向的长孔。Preferably, the
优选地,所述状态量信息包括有:台车4在x,y方向上的位置,吊绳58的长度l,以及吊绳58的二维摆角θx,θy。Preferably, the state quantity information includes: the position of the
优选地,所述吊车控制装置根据吊车状态测量装置所检测获得的吊绳58的二维摆角θx,θy的大小来判断吊车负载7的摆动状态。Preferably, the crane control device judges the swing state of the crane load 7 according to the two-dimensional swing angles θ x , θ y of the
优选地,所述驱动装置包括有三个伺服电机、三个伺服电机驱动器、两套传动装置,所述三个伺服电机分别用于提供台车4沿x方向运动驱动力、台车4与桥架2沿y方向运动的驱动力以及提升负载7的卷轴驱动力,所述三个伺服电机驱动器为与三个伺服电机配套的驱动器,具有力矩控制模式,用于根据控制电压的大小来使所配套的电机输出对应的力矩,所述两套传动装置包括有x方向上的传动装置和y方向上的传动装置,所述x方向上的传动装置包括两个同步轮和一条闭环同步带,所述y方向上的传动装置包括四个同步轮、两根同步轴和两条闭环同步带,所述台车4和桥架2固定在同步带上。Preferably, the driving device includes three servo motors, three servo motor drivers, and two sets of transmission devices, and the three servo motors are respectively used to provide the driving force for the movement of the
优选地,所述吊车状态测量装置包括有:安装在三个伺服电机上的位置编码器、二维摆角测量装置和限位装置,所述二维摆角测量装置包括有两个半圆弧形摆架,内半圆弧摆架61的外径略小于外半圆弧摆架62的内径,所述内半圆弧摆架61和外半圆弧摆架62绕着各自的旋转轴转动,所述两个半圆弧形摆架的旋转轴都位于平行与水平面的同一平面上,且相互正交,交点与两个半圆弧圆心重合,并与吊绳起摆点的定位孔63重合,所述两个旋转轴的一端分别安装有两个旋转编码器64,所述旋转编码器用于测量半圆弧形摆架的旋转角度值,所述两个半圆弧摆架中间具有用于通过吊绳的光滑开缝65,所述限位装置安装在第一滑轨31和第二滑轨32的两端,所述两个半圆弧形摆架的轴对称端上安装有配重块66,所述位置编码器为中空/盲孔增量式光电编码器。Preferably, the crane state measuring device includes: a position encoder installed on three servo motors, a two-dimensional swing angle measuring device and a limit device, and the two-dimensional swing angle measuring device includes two semicircular arcs swing frame, the outer diameter of the inner semicircle
优选地,所述吊车控制装置包括安装有实时环境的PC机和数据采集卡,所述数据采集卡能够采集五路编码器信号和四路限位开关信号,并同时能够输出三路模拟信号,所述吊车控制装置采用基于MATLAB RTW的实时环境,按照预定的控制方法实时地计算出相应的控制信号并发送到桥式吊车模拟装置,从而使得控制桥式吊车模拟装置的按预定要求运行。Preferably, the crane control device includes a PC installed with a real-time environment and a data acquisition card, the data acquisition card can collect five-way encoder signals and four-way limit switch signals, and can output three-way analog signals at the same time, The crane control device adopts a real-time environment based on MATLAB RTW, calculates corresponding control signals in real time according to a predetermined control method and sends them to the bridge crane simulation device, so that the control bridge crane simulation device operates according to predetermined requirements.
优选地,所述控制信号为按照预定的控制方法实时地计算出的相应的控制信号,所述预定的控制方法可以是现有各种控制方法中的任意一种。Preferably, the control signal is a corresponding control signal calculated in real time according to a predetermined control method, and the predetermined control method may be any one of various existing control methods.
由以上本发明提供的技术方案可见,本发明提供的桥式吊车自动控制实验系统可以真实地反映桥式吊车的运动学、动力学特性,并可以方便地进行控制器替换,从而能够对现有各种桥式吊车控制方法进行验证,并可以对控制器进行进一步的研究设计,推动吊车控制方法实用化的研究。此外,该系统作为一个典型的非线性欠驱动系统,还可以用于在教学中对不同控制方法的进行验证说明的实验平台。本发明中用于吊绳摆角测量的二维摆角测量装置与以往的摆角测量装置相比,具有价格便宜、数据处理方便、测量范围大、灵敏度高的优点。It can be seen from the above technical solutions provided by the present invention that the bridge crane automatic control experiment system provided by the present invention can truly reflect the kinematics and dynamic characteristics of the bridge crane, and can easily replace the controller, so that the existing Various overhead crane control methods are verified, and further research and design of the controller can be carried out to promote the practical research of crane control methods. In addition, as a typical nonlinear underactuated system, the system can also be used as an experimental platform for verifying and explaining different control methods in teaching. Compared with the previous swing angle measuring device, the two-dimensional swing angle measuring device used for measuring the swing angle of the hanging rope has the advantages of low price, convenient data processing, large measuring range and high sensitivity.
附图说明 Description of drawings
图1为本发明提供的一种桥式吊车自动控制实验系统的组成结构示意图;Fig. 1 is the composition structural representation of a kind of overhead crane automatic control experiment system provided by the present invention;
图2是本发明的吊车模拟机械主体的结构示意图;Fig. 2 is the structural representation of the main body of the crane simulation machine of the present invention;
图3是本发明的吊车模拟机械主体中的卷轴装置示意图;Fig. 3 is the schematic diagram of the reel device in the main body of the crane simulation machine of the present invention;
图4是本发明的二维摆角测量装置示意图;Fig. 4 is a schematic diagram of a two-dimensional pendulum angle measuring device of the present invention;
图5是本发明的二维摆角测量装置俯视图;Fig. 5 is a top view of the two-dimensional pendulum angle measuring device of the present invention;
图6是本发明的驱动装置对桥架的传动示意图;Fig. 6 is a schematic diagram of the transmission of the drive device of the present invention to the bridge;
图7是本发明的测量角度转换关系示意图;Fig. 7 is a schematic diagram of the measurement angle conversion relationship of the present invention;
图8是本发明提供的桥式吊车自动控制实验系统中吊车控制装置的结构示意图。Fig. 8 is a structural schematic diagram of the crane control device in the overhead crane automatic control experimental system provided by the present invention.
具体实施方式 Detailed ways
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和实施方式对本发明作进一步的详细说明。In order to enable those skilled in the art to better understand the solution of the present invention, the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.
近年来国内外自动化领域的许多学者针对桥式吊车系统开展了大量研究,提出了多种控制方法,力图实现桥式吊车的安全、高效运输。但是这些控制方法大多采用了线性化或简化的了系统模型,而实际的吊车系统是一个强非线性系统,且运行过程中还存在着摩擦力、风力等干扰因素,因此如果应用到实际系统中去,这些方法的可靠性很难得到保证。为了更好地研究桥式吊车的动态特性,验证各种控制方法的控制效果,并进一步提出更有效的桥式吊车控制策略,本发明提供了下面的三维桥式吊车自动控制实验系统。In recent years, many scholars in the field of automation at home and abroad have carried out a lot of research on the overhead crane system, and proposed a variety of control methods, trying to realize the safe and efficient transportation of the overhead crane. However, most of these control methods use linearized or simplified system models, and the actual crane system is a strongly nonlinear system, and there are still interference factors such as friction and wind during operation, so if applied to the actual system However, the reliability of these methods is difficult to guarantee. In order to better study the dynamic characteristics of overhead cranes, verify the control effects of various control methods, and further propose more effective overhead crane control strategies, the present invention provides the following three-dimensional overhead crane automatic control experimental system.
图1为本发明提供的一种桥式吊车自动控制实验系统的组成结构示意图,如图1所示,本发明提供的一种桥式吊车自动控制实验系统,包括:实际桥式吊车模拟装置101、吊车状态测量装置102以及吊车控制装置103,其中:Fig. 1 is a composition structure schematic diagram of a kind of overhead crane automatic control experimental system provided by the present invention, as shown in Fig. 1, a kind of overhead crane automatic control experimental system provided by the present invention comprises: actual overhead
桥式吊车模拟装置101,用于模拟实际桥式吊车系统的结构,它是整个实验系统的控制对象;The
吊车状态测量装置102,与桥式吊车模拟装置101相连接,用于实时测量所述桥式吊车模拟装置101的状态量信息,并发送给吊车控制装置103;The crane
吊车控制装置103,与桥式吊车模拟装置101、吊车状态测量装置102相连接,用于接收吊车状态测量装置102所测量的桥式吊车模拟装置101的状态量信息,并根据该状态量信息,按照预定的控制方法实时地计算出相应的控制信号,然后将控制信号发送到桥式吊车模拟装置,从而使得控制桥式吊车模拟装置的按预定要求运行。The
在本发明中,所述吊车控制装置103通过对桥式吊车模拟装置101发出预定控制量信号,控制桥式吊车模拟装置101的具体运行,使得桥式吊车模拟装置101运行特定的吊车控制方式。In the present invention, the
在本发明中,所述控制信号为按照预定的控制方法实时地计算出的相应的控制信号,所述预定的控制方法可以是现有各种控制方法中的任意一种。In the present invention, the control signal is a corresponding control signal calculated in real time according to a predetermined control method, and the predetermined control method may be any one of various existing control methods.
需要指出的是,桥式吊车是一种复杂的非线性受控对象,其中的控制量为各个方向上的电机力矩,而系统的自由度既包括台车的位移向量和吊绳长度,同时又包括负载在各个方向上的摆动,系统自由度的维数大于控制向量的维数,因此它是一个典型的欠驱动系统。对于这种典型的欠驱动系统,如何对其实现高性能控制仍然是目前急需解决的一个技术难题。因此,本发明提供的桥式吊车自动控制实验系统也可以作为通常欠驱动系统自动控制的教学和研究平台使用。It should be pointed out that the overhead crane is a complex nonlinear controlled object, in which the control quantity is the motor torque in each direction, and the degree of freedom of the system includes both the displacement vector of the trolley and the length of the suspension rope, and at the same time Including the swing of the load in all directions, the dimension of the system degrees of freedom is larger than that of the control vector, so it is a typical underactuated system. For this typical underactuated system, how to realize high-performance control is still a technical problem that needs to be solved urgently. Therefore, the bridge crane automatic control experiment system provided by the present invention can also be used as a teaching and research platform for automatic control of underactuated systems.
在本发明中,桥式吊车模拟装置101包括:吊车模拟机械主体1011和驱动装置1012,其中,所述吊车模拟机械主体1011,用于模拟实际桥式吊车系统的具体结构,以进行吊车的各种控制方式操作;所述驱动装置1012,用于接收吊车控制装置103发出的控制信号,为所述吊车模拟机械主体1011进行吊车的各种控制方式操作提供驱动力。In the present invention, the bridge
在本发明的桥式吊车自动控制实验系统中,吊车模拟机械主体1011部分是整个实验系统的骨架,如图2所示,主要包括支撑框架1、桥架2、第一滑轨31、第二滑轨32、台车4、设置在台车4上的卷轴5以及支撑脚6,其中,所述支撑框架1是由12根硬质金属管焊接而成的中空长方体,在所述支撑框架1的底部四个角处设置有旋转的、高低可调的支撑脚6,当地面不平坦时,通过调节支撑框架1底部的四个旋转支撑脚6,可以保证支撑框架1的上部平面与水平面平行,使得支撑框架1在不平坦的地面实现稳固放置。In the bridge crane automatic control experiment system of the present invention, the crane
此外,为了加强本发明的吊车模拟机械主体1011部分的稳固性,避免在模拟吊车的负载7在移动运行时发生晃动,本发明在支撑框架1下部的直角处通过三角铁进行加固。In addition, in order to strengthen the stability of the
需要说明的是,支撑框架1主要用于支撑起吊车的工作空间,由所述支撑框架1所围绕确定的中空长方体是本发明吊车模拟装置的工作空间。本发明在所述支撑框架1的上部支撑框的y方向上安装有两条平行的第一滑轨31,所述桥架2可以沿着该第一滑轨31进行滑动。此外,在本发明中,所述桥架2是由质量轻且刚度好的金属制成,为矩形框架,它的x方向上安装有两条平行的第二滑轨32,所述台车4可以沿着该第二滑轨32进行滑动。在本发明中,所述台车4是一个轻质的金属板,在其上面安装有用于升降负载的钢丝绳卷轴5(如图3所示)。It should be noted that the supporting frame 1 is mainly used to support the working space of the crane, and the hollow cuboid surrounded by the supporting frame 1 is the working space of the crane simulation device of the present invention. In the present invention, two parallel first sliding rails 31 are installed in the y direction of the upper supporting frame of the supporting frame 1 , and the bridge frame 2 can slide along the first sliding rails 31 . In addition, in the present invention, the bridge frame 2 is made of metal with light weight and good rigidity, and is a rectangular frame, and two parallel second slide rails 32 are installed on its x direction, and the
鉴于如上所述,台车4和桥架2都可以在支撑框架1上面的水平面上沿着滑轨(即第一滑轨31或者第二滑轨32)运动,使得负载7通过台车4的运动以及卷轴5的运动可以到达支撑框架1所围绕确定的工作空间中的任意位置。In view of the above, both the
在本发明中,上述的台车4和桥架2在上面运动的滑轨(即第一滑轨31或者第二滑轨32)采用的是吊轮滑轨,并且桥架2和台车4都是采用轻质铝合金材料制成。In the present invention, the above-mentioned
如图3所示,在本发明的吊车模拟机械主体1011中,安装在台车4上的用于升降负载7的卷轴5,包括有:传动内轴51、销52、传动轴套53、绞盘54、丝杠55、支撑轴承56、支撑轴承架57、钢丝吊绳58。其中,所述传动轴套53、绞盘54和丝杠55固定连接在一起。As shown in Figure 3, in the
在本发明中,所述钢丝吊绳58优选为选用直径为1mm(毫米)的多股钢丝绳,该钢丝吊绳58在绞盘54上进行单层盘绕,用于悬挂负载的一端径直穿过用于二维角度测量装置的起摆点定位孔。In the present invention, the
在本发明中,所述支撑轴承架57对支撑轴承56起到支撑作用,支撑轴承56与丝杠55螺纹咬合连接,于是,丝杠55在进行旋转的同时也会发生水平位移,在本发明中,所述丝杠55每旋转一周就水平位移1mm(毫米)。In the present invention, the
所述传动内轴51与电机50上的转动轴通过连轴器连接在一起。所述销52是一根穿过传动内轴51和传动轴套53上的两侧孔59的金属棒。当电机50转动时,通过传动内轴51和销52带动传动轴套53一起转动,从而接着带动绞盘54、丝杠55一起转动。The transmission
由于本发明的传动轴套53上的侧孔59是两条水平方向的长孔,因而传动轴套53在转动的同时还可以在水平方向上进行自由移动,因此不会影响到丝杠55、与丝杠55固定连接的绞盘54在水平方向的运动。Because the side holes 59 on the
综上所述,当电机50转动时会带动绞盘54转动,鉴于钢丝吊绳58盘绕在绞盘54上且一端悬挂有所述负载7,从而可以实现负载7的升降,与此同时,由于绞盘54每旋转一周时,在水平方向移动的距离与钢丝绳的直径相等,即都为1mm(毫米),因而可以保证钢丝吊绳58总是竖直穿过起摆点定位孔63。这样一方面可以减少钢丝绳58与起摆点定位孔之间的摩擦力,另一方面也可以保证钢丝绳吊58在绞盘54上可以单层致密地盘绕,从而可以通过电机的编码器准确地计算出吊绳长度的变化。例如,当绞盘54下降负载7,向下旋转一周,与绞盘54连接在一起的丝杠55也旋转一周,并向支撑轴承56方向水平移动1mm,同时一圈钢丝绳58被松开,钢丝吊绳58在绞盘54上向传动内轴51的方向后退一个直径的距离,因此,可以保证钢丝绳58总是竖直穿过起摆点定位孔63。In summary, when the
在本发明中,如图6所示,驱动装置1012包括有:三个伺服电机、三个伺服电机驱动器、两套传动装置。它主要负责为吊车模拟机械主体1011提供驱动力,包括:台车4沿x方向运动驱动力、台车4与桥架2沿y方向运动的驱动力以及提升负载7的卷轴驱动力。其中,鉴于x,y方向的驱动力需要将电机的转矩转换为水平方向上的力,所以,本发明通过同步轮91与同步带92来进行传动,实现将电机的转矩转换为水平方向上的力。In the present invention, as shown in FIG. 6 , the
在本发明中通过伺服电机的力矩控制模式可以对电机输出的转矩进行控制。In the present invention, the torque output by the motor can be controlled through the torque control mode of the servo motor.
为了更好地研究、控制桥式吊车运行过程中的动态性能,需要对吊车的动力学进行分析,也就是说需要对系统进行力控制。具体而言,鉴于伺服电机可以分为直流、交流两类,其中以交流电机的输出力矩较大,故本发明的实例中选用交流伺服电机。In order to better study and control the dynamic performance of the overhead crane during its operation, it is necessary to analyze the dynamics of the crane, that is to say, the force control of the system is required. Specifically, in view of the fact that servo motors can be divided into two types, DC and AC, among which the output torque of AC motors is larger, AC servo motors are selected in the examples of the present invention.
本发明通过交流伺服电机的力矩控制模式可以对电机输出的转矩进行控制。其中,托动桥架2与台车4的电机所需要的力矩较大,故本发明选择为使用功率为200W的交流伺服电机81,额定转矩6.4Nm,额定转速3000rpm,同时由于吊车运行并不需要太高的速度,所以,本发明还可以安装10:1的减速机,这样能够增大电机的输出转矩。The invention can control the torque output by the motor through the torque control mode of the AC servo motor. Wherein, the torque required by the motor supporting the bridge frame 2 and the
带动卷轴5的电机要求质量比较小,而且鉴于本发明采用的负载7不大,较轻,因而本发明可以选择使用功率为100W的交流伺服电机82,同时装配9:1的减速机。The motor that drives the
在本发明的实例中,三个伺服电机驱动器选择为与各个电机配套的驱动器,它们具有力矩控制模式,可以根据控制电压的大小来使所配套的电机输出对应的力矩,因此,本发明的吊车控制装置103可以通过向驱动装置1022中的伺服电机驱动器发送模拟的控制量电信号来控制电机输出对应的力矩,需要说明的是,控制量即为各个方向上的电机力矩。In the example of the present invention, three servo motor drivers are selected as the drivers that are matched with each motor, they have a torque control mode, and can make the matching motors output the corresponding torque according to the size of the control voltage. Therefore, the crane of the present invention The
在本发明吊车模拟机械主体1011中,水平方向上的两个托动力是通过两套同步装置进行传动的,把台车4和桥架2固定在相应的同步带92上,即可实现电机81对其的水平托动。在y方向上,由于架桥2长度大,只在一侧进行托动会引起架桥2扭曲,影响吊车的正常运行。为此,本发明在桥架2的另一侧也安装有同步轮91与同步带92,并且两侧对应的同步轮91通过一根同步轴93相连,从而实现同步转动,参见图6所示。In the
在本发明中,吊车状态测量装置102用于测量桥式吊车模拟装置101(模拟三维桥式吊车系统)的5个状态量,即台车4在x,y方向上的位置,吊绳长度l,以及吊绳的二维摆角θx,θy,包括有:安装在三个伺服电机上的位置编码器1021,二维摆角测量装置1022和限位装置1023。In the present invention, the crane
在本发明中,所述吊车控制装置103可以通过吊车状态测量装置102所检测获得的吊绳的二维摆角θx,θy的大小来判断吊车负载的摆动状态。In the present invention, the
其中,位置量x,y和l的变化量可以通过三个交流伺服电机的位置编码器1021读数计算得到。Wherein, the variation of the position quantities x, y and l can be calculated through the readings of the position encoders 1021 of the three AC servo motors.
具体公式如下:The specific formula is as follows:
在本发明中,上述两个位置编码器为中空/盲孔增量式光电编码器,输出方式为长线驱动。In the present invention, the above two position encoders are hollow/blind hole incremental photoelectric encoders, and the output mode is long-line drive.
吊绳的二维摆角可以通过图4所示装置的测量值来计算得到。在桥式吊车的动力学模型中为了数学表述方便,一般定义了θx与θy来表示负载摆角的大小,而图4所示测量装置只能测出角度θ1与θ2,因此需要建立θx、θy与θ1、θ2之间的关系式。根据图6可以得到:The two-dimensional swing angle of the sling can be calculated from the measured values of the device shown in Figure 4. In the dynamic model of the overhead crane, for the convenience of mathematical expression, θ x and θ y are generally defined to represent the size of the load swing angle, while the measuring device shown in Figure 4 can only measure the angles θ 1 and θ 2 , so it is necessary Establish the relationship between θ x , θ y and θ 1 , θ 2 . According to Figure 6, we can get:
θx=θ1 θ x = θ 1
其中,ly、lz分别是l在y轴和z上的投影,lxz为l在xz平面上的投影。根据实际情况,我们可以假设负载摆角不超过90度,即:Among them, l y and l z are the projections of l on the y-axis and z respectively, and l xz is the projection of l on the xz plane. According to the actual situation, we can assume that the load swing angle does not exceed 90 degrees, that is:
于是可以得到θx与θy表达式如下:Then the expressions of θ x and θ y can be obtained as follows:
θx=θ1 θ x = θ 1
θy=arctan(tan(θ2)cos(θ1))’θ y = arctan(tan(θ 2 )cos(θ 1 ))'
测量角度量θ1,θ2的可以通过编码器读数计算得到:The measured angle θ 1 and θ 2 can be calculated by the encoder reading:
如图4、图5所示,所述二维摆角测量装置1022包括有两个半圆弧形摆架,内半圆弧摆架61的外径略小于外半圆弧摆架62的内径,它们可以绕各自的旋转轴67转动,这两个半圆弧形摆架的旋转轴67都位于平行与水平面的同一平面上,且相互正交,交点与两个半圆弧圆心重合,并与吊绳起摆点的定位孔63重合。在两个旋转轴的一端分别安装有两个旋转编码器64,用于测量半圆弧形摆架的旋转角度值。每个半圆弧摆架中间都有光滑开缝65,参见图5,开缝宽度略大于吊绳直径,将吊绳从两个半弧的开缝中先后串过,这样当吊绳发生摆动时就会带动两个半圆弧的转动,从而可以得到吊绳在两个正交铅垂面的摆角θ1与θ2。由于本发明中的二维摆角测量装置1022采用的是这种半圆弧形摆架,两个摆架可以在大范围内(-85°~85°,以摆绳竖直向下为0°角)自由摆动互不干涉,所以它可以测量摆角范围可达-85°~85°,这种大范围二维摆角测量装置能够极大地方便分析桥式吊车在各种极端情况下的状态变化。As shown in Fig. 4 and Fig. 5, the two-dimensional pendulum angle measuring device 1022 includes two semi-arc pendulums, the outer diameter of the inner
此外,本发明的二维摆角测量装置1022还在半圆弧形摆架的轴对称端上安装了配重块66进行配重,这样就不会因为半圆弧自重使吊绳产生弯折,从而提高了测量的灵敏度。In addition, the two-dimensional pendulum angle measuring device 1022 of the present invention also installs a
所述吊车状态测量装置102包括安装在x,y方向上第一滑轨31和第二滑轨32两端的限位装置1023。所述限位装置1023为限位开关,用于防止在控制失灵或误操作时,桥架2或台4车冲出轨道发生意外。The crane
在本发明的实例中,可以分别在x,y方向上一条轨道的两端,安装有一个小型行程开关用于限位。In the example of the present invention, a small travel switch can be installed at both ends of a track in the x and y directions for position limitation.
鉴于一个三维桥式吊车实验平台中的控制系统需要能实时地读取传感器反馈的当前系统信息,并计算发送出合适的控制信号以达到预期的控制目的。因此,需要一个实时环境来完成所需的控制任务。In view of the fact that the control system in a three-dimensional bridge crane experimental platform needs to be able to read the current system information fed back by the sensor in real time, and calculate and send the appropriate control signal to achieve the expected control purpose. Therefore, a real-time environment is required to accomplish the required control tasks.
为此,本发明中的吊车控制装置103优选为采用基于PC机的实时控制装置,这种方法控制器编程简单,更换方法,易于进行算法测试,适合研究、教学中使用。如图8所示,本发明的吊车控制装置103除了安装有实时环境的PC机1031外,本发明的吊车控制装置103还包括数据采集卡1032,参见图8所示,其中,数据采集卡用于采集来自位置传感器、角度传感器的信息,并将这些信息送到PC机中,还负责将PC机发送的控制指令转化为合适的电信号发送给驱动装置1012中的相应伺服电机驱动器。For this reason, the
在本发明中,所述控制信号为按照预定的控制方法实时地计算出的相应的控制信号,要验证一种控制方法对于桥式吊车的控制效果,只需要使用根据该控制算法搭建的控制器,对吊车控制装置103中的实时环境PC机1031中的控制器进行替换。由于本发明采用的是基于Matlab RTW的实时环境,它可以与Matlab/Simulink无缝连接,所以可以利用Simulink各工具箱中的模块方便地完成控制器搭建。所述控制器可以利用数据采集卡送入到PC机中的桥式吊车系统状态量信息,同时还可以通过数据采集卡向电机驱动器发送实时的控制命令。In the present invention, the control signal is a corresponding control signal calculated in real time according to a predetermined control method. To verify the control effect of a control method on an overhead crane, only a controller built according to the control algorithm is required. , the controller in the real-
对于本发明提供的三维桥式吊车实验平台中的控制系统中基于PC机的实时控制装置,即吊车控制装置103,本发明采用的是基于MATLAB RTW的实时环境,该实时环境具有以下的优点:For the real-time control device based on PC in the control system in the three-dimensional bridge crane experimental platform provided by the present invention, that is, the
可以针对不同的对象平台自动生成高效率可执行代码;Can automatically generate high-efficiency executable code for different object platforms;
提供了一条从设计到应用快捷、直接的道路;Provides a fast and direct path from design to application;
与MATLAM和Simulink无缝连接,可以方便地实现各种控制算法,并可以将仿真中测试通过的控制器方便地实用到实验平台的控制中去。Seamlessly connected with MATLAM and Simulink, various control algorithms can be realized conveniently, and the controllers that pass the test in the simulation can be conveniently applied to the control of the experimental platform.
简单的图形用户接口;Simple graphical user interface;
开放的体系统结构和可扩展的编译过程,可以很容易地将开发的程序移植到各类单片机中。The open body system structure and extensible compilation process can easily transplant the developed program to various single-chip computers.
需要说明的是,SIMULINK是MATLAB软件的扩展,它是实现动态系统建模和仿真的一个软件包。It should be noted that SIMULINK is an extension of MATLAB software, which is a software package for dynamic system modeling and simulation.
如上所说,MATLAB RTW支持多种对象平台,本发明的实例选择Window下的实时控制平台RealTime Windows Target(RTWT),它仅需要一台PC机,可以实现系统的实时控制,控制周期最小可达1ms左右。As said above, MATLAB RTW supports multiple object platforms, and the example of the present invention selects the real-time control platform RealTime Windows Target (RTWT) under Window, and it only needs a PC, can realize the real-time control of the system, and the minimum control period can reach 1ms or so.
由于本发明中,吊车控制装置103需要通过3路摸拟量来控制驱动装置1012中的3台伺服电机的转矩,此外,鉴于吊车状态测量装置102中测量5个状态量的编码器输出信号都是差分增量信号,因而,吊车控制装置103中的数据采集卡需要能够读取5路编码器信号,并能够同时输出3路模拟信号,采样频率大于1KHz。当吊车状态测量装置102中还包括有限位装置时,所述数据采集卡还用于采集4路限位开关信号。因此,本发明选取的是固高GT-400SV板卡。In the present invention, the
本发明所提供的一种三维桥式吊车自动控制实验系统,该系统可以真实地反映桥式吊车的运动学、动力学特性,并可以方便地进行控制器替换,从而能够对现有各种桥式吊车控制方法进行验证,并可以对控制器进行进一步的研究设计,推动吊车控制方法实用化的研究。此外,该系统作为一个典型的非线性欠驱动系统,还可以用于在教学中对不同控制方法的进行验证说明的实验平台。本发明中用于吊绳摆角测量的二维摆角测量装置1022与以往的摆角测量装置相比,具有价格便宜、数据处理方便、测量范围大、灵敏度高的优点。A three-dimensional bridge crane automatic control experiment system provided by the present invention can truly reflect the kinematics and dynamic characteristics of the bridge crane, and can easily replace the controller, so that it can be used for various existing bridge cranes. The control method of the crane can be verified, and the controller can be further researched and designed to promote the practical research of the crane control method. In addition, as a typical nonlinear underactuated system, the system can also be used as an experimental platform for verifying and explaining different control methods in teaching. The two-dimensional swing angle measuring device 1022 used for measuring the swing angle of the hanging rope in the present invention has the advantages of low price, convenient data processing, large measuring range and high sensitivity compared with the previous swing angle measuring devices.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above is only a preferred embodiment of the present invention, it should be pointed out that, for those of ordinary skill in the art, without departing from the principle of the present invention, some improvements and modifications can also be made, and these improvements and modifications can also be made. It should be regarded as the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101523523A CN101419764A (en) | 2008-10-17 | 2008-10-17 | Automatic experiment system for bridge type crane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNA2008101523523A CN101419764A (en) | 2008-10-17 | 2008-10-17 | Automatic experiment system for bridge type crane |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101419764A true CN101419764A (en) | 2009-04-29 |
Family
ID=40630542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2008101523523A Pending CN101419764A (en) | 2008-10-17 | 2008-10-17 | Automatic experiment system for bridge type crane |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101419764A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661676B (en) * | 2009-09-16 | 2011-07-20 | 山东建筑大学 | Tower-type crane operation stimulating and training system |
CN102765665A (en) * | 2012-07-13 | 2012-11-07 | 南开大学 | Nonlinear coupling control method for bridge crane based on generalized movement of load |
CN103440795A (en) * | 2013-09-11 | 2013-12-11 | 傅仕伟 | Tower crane simulated training device |
CN104129713A (en) * | 2014-07-11 | 2014-11-05 | 浙江工业大学 | Offline bridge crane locus control method |
CN105174061A (en) * | 2015-09-28 | 2015-12-23 | 南开大学 | Double-pendulum crane global time optimal trajectory planning method based on pseudo-spectral method |
CN105549386A (en) * | 2015-12-04 | 2016-05-04 | 南开大学 | Automatic ship crane control experiment system |
CN105668422A (en) * | 2016-03-21 | 2016-06-15 | 南开大学 | Bridge crane emergency braking method for trolley stop and load swing eliminating |
CN110704983A (en) * | 2019-10-12 | 2020-01-17 | 中国铁路设计集团有限公司 | Parameter-driven lower joint linkage crane dynamic operation simulation method |
CN112079257A (en) * | 2019-06-14 | 2020-12-15 | 湖南釜晟智能科技有限责任公司 | System and method for monitoring gravity center position of hanging object based on image acquisition |
CN112379605A (en) * | 2020-11-24 | 2021-02-19 | 中国人民解放军火箭军工程大学 | Bridge crane semi-physical simulation control experiment system and method based on visual servo |
CN113327490A (en) * | 2021-07-06 | 2021-08-31 | 广州中科博约医疗科技有限公司 | Precision simulation device for human body surface physiological micromotion |
-
2008
- 2008-10-17 CN CNA2008101523523A patent/CN101419764A/en active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101661676B (en) * | 2009-09-16 | 2011-07-20 | 山东建筑大学 | Tower-type crane operation stimulating and training system |
CN102765665A (en) * | 2012-07-13 | 2012-11-07 | 南开大学 | Nonlinear coupling control method for bridge crane based on generalized movement of load |
CN103440795A (en) * | 2013-09-11 | 2013-12-11 | 傅仕伟 | Tower crane simulated training device |
CN104129713A (en) * | 2014-07-11 | 2014-11-05 | 浙江工业大学 | Offline bridge crane locus control method |
CN104129713B (en) * | 2014-07-11 | 2016-02-24 | 浙江工业大学 | A kind of traverse crane method for controlling trajectory of off-line |
CN105174061A (en) * | 2015-09-28 | 2015-12-23 | 南开大学 | Double-pendulum crane global time optimal trajectory planning method based on pseudo-spectral method |
CN105549386A (en) * | 2015-12-04 | 2016-05-04 | 南开大学 | Automatic ship crane control experiment system |
CN105549386B (en) * | 2015-12-04 | 2018-01-19 | 南开大学 | Ship's crane automatic experiment system |
CN105668422A (en) * | 2016-03-21 | 2016-06-15 | 南开大学 | Bridge crane emergency braking method for trolley stop and load swing eliminating |
CN105668422B (en) * | 2016-03-21 | 2017-04-19 | 南开大学 | Bridge crane emergency braking method for trolley stop and load swing eliminating |
CN112079257A (en) * | 2019-06-14 | 2020-12-15 | 湖南釜晟智能科技有限责任公司 | System and method for monitoring gravity center position of hanging object based on image acquisition |
CN110704983A (en) * | 2019-10-12 | 2020-01-17 | 中国铁路设计集团有限公司 | Parameter-driven lower joint linkage crane dynamic operation simulation method |
CN110704983B (en) * | 2019-10-12 | 2023-01-20 | 中国铁路设计集团有限公司 | Crane dynamic operation simulation method for joint linkage under parameter drive |
CN112379605A (en) * | 2020-11-24 | 2021-02-19 | 中国人民解放军火箭军工程大学 | Bridge crane semi-physical simulation control experiment system and method based on visual servo |
CN113327490A (en) * | 2021-07-06 | 2021-08-31 | 广州中科博约医疗科技有限公司 | Precision simulation device for human body surface physiological micromotion |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101419764A (en) | Automatic experiment system for bridge type crane | |
CN105549386B (en) | Ship's crane automatic experiment system | |
CN105252539B (en) | A vibration control system and method for suppressing parallel platform based on acceleration sensor | |
CN101723239B (en) | Lifting hook attitude detection device and crane | |
CN105934401B (en) | For controlling the control device of rocking apparatus from electronic slidable member Sling Loads, process and hoisting apparatus | |
CN111409069B (en) | A kinematic velocity solution method for a rope-pulled parallel robot with variable structure | |
CN105599922B (en) | A kind of 1/6g low gravitations balance erecting by overhang | |
CN2892797Y (en) | Self-balance top rotary tower type crane | |
CN111319028B (en) | A rope-pulled parallel robot with variable structure and its kinematics multi-solution solution method | |
CN102976207B (en) | Suspension centre automatic adjusting method of leveling spreader for spacecraft | |
CN110294414A (en) | A kind of Crane control method and device for preventing shaking control algolithm based on open loop | |
CN112684815B (en) | An intelligent control system for bridge rotation status | |
CN100435050C (en) | Control method of pendulum acrobatic movement of underactuated double pendulum system | |
CN115258972A (en) | Double-arm cooperative flexible cable parallel hoisting robot and control method thereof | |
CN203593548U (en) | Mechanical simulation control testing platform system of gantry crane | |
CN102701076B (en) | Control device and control method for six-degree-of-freedom lifting cooperative parallel-flexible-cable equipment | |
CN116167217A (en) | An automatic control method for maintenance and hoisting of hydroelectric generator sets | |
CN106644514A (en) | Planetary vehicle single-wheel rack device capable of continuously adjusting load | |
CN105565163B (en) | A kind of bridge crane hook steel wire rope beat angle detecting device and detection method | |
CN202829333U (en) | Tilt rotation driving mechanism and crane | |
CN109335967B (en) | Flexible crane sway angle measurement, automatic control and evaluation system and method | |
CN102141469B (en) | Installation method of two-degree-of-freedom operating lever drive test device | |
CN106769153B (en) | Ship's crane automatic experiment system | |
CN204944519U (en) | Orbit movable multi-dimensional measurement platform | |
CN201817155U (en) | Winding machine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Open date: 20090429 |