Papers by Abdelhameed Ibrahim

IEEE Access
In pattern recognition and data mining, feature selection is one of the most crucial tasks. To in... more In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features' effectiveness in classification problems. Results: The achieved results demonstrate the algorithm's superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon's rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method's significance, superiority, and statistical difference. INDEX TERMS Feature selection, dipper throated optimization algorithm, Sine cosine optimization algorithm, meta-heuristic optimization.
制約なし関数最適化のためのカオスHarris Hawks最適化【JST・京大機械翻訳】
IEEE Conference Proceedings, 2020
MEJ. Mansoura Engineering Journal

Biomimetics
The COVID-19 epidemic poses a worldwide threat that transcends provincial, philosophical, spiritu... more The COVID-19 epidemic poses a worldwide threat that transcends provincial, philosophical, spiritual, radical, social, and educational borders. By using a connected network, a healthcare system with the Internet of Things (IoT) functionality can effectively monitor COVID-19 cases. IoT helps a COVID-19 patient recognize symptoms and receive better therapy more quickly. A critical component in measuring, evaluating, and diagnosing the risk of infection is artificial intelligence (AI). It can be used to anticipate cases and forecast the alternate incidences number, retrieved instances, and injuries. In the context of COVID-19, IoT technologies are employed in specific patient monitoring and diagnosing processes to reduce COVID-19 exposure to others. This work uses an Indian dataset to create an enhanced convolutional neural network with a gated recurrent unit (CNN-GRU) model for COVID-19 death prediction via IoT. The data were also subjected to data normalization and data imputation. Th...

IEEE Access, 2023
Introduction: In pattern recognition and data mining, feature selection is one of the most crucia... more Introduction: In pattern recognition and data mining, feature selection is one of the most crucial tasks. To increase the efficacy of classification algorithms, it is necessary to identify the most relevant subset of features in a given domain. This means that the feature selection challenge can be seen as an optimization problem, and thus meta-heuristic techniques can be utilized to find a solution. Methodology: In this work, we propose a novel hybrid binary meta-heuristic algorithm to solve the feature selection problem by combining two algorithms: Dipper Throated Optimization (DTO) and Sine Cosine (SC) algorithm. The new algorithm is referred to as bSCWDTO. We employed the sine cosine algorithm to improve the exploration process and ensure the optimization algorithm converges quickly and accurately. Thirty datasets from the University of California Irvine (UCI) machine learning repository are used to evaluate the robustness and stability of the proposed bSCWDTO algorithm. In addition, the K-Nearest Neighbor (KNN) classifier is used to measure the selected features' effectiveness in classification problems. Results: The achieved results demonstrate the algorithm's superiority over ten state-of-the-art optimization methods, including the original DTO and SC, Particle Swarm Optimization (PSO), Whale Optimization Algorithm (WOA), Grey Wolf Optimization (GWO), Multiverse Optimization (MVO), Satin Bowerbird Optimizer (SBO), Genetic Algorithm (GA), the hybrid of GWO and GA, and Firefly Algorithm (FA). Moreover, Wilcoxon's rank-sum test was performed at the 0.05 significance level to study the statistical difference between the proposed method and the alternative feature selection methods. Conclusion: These results emphasized the proposed feature selection method's significance, superiority, and statistical difference. INDEX TERMS Feature selection, dipper throated optimization algorithm, Sine cosine optimization algorithm, meta-heuristic optimization. The associate editor coordinating the review of this manuscript and approving it for publication was Claudia Raibulet .

Wind speed forecasting using optimized bidirectional LSTM based on dipper throated and genetic optimization algorithms
Frontiers in Energy Research, Jun 1, 2023
Accurate forecasting of wind speed is crucial for power systems stability. Many machine learning ... more Accurate forecasting of wind speed is crucial for power systems stability. Many machine learning models have been developed to forecast wind speed accurately. However, the accuracy of these models still needs more improvements to achieve more accurate results. In this paper, an optimized model is proposed for boosting the accuracy of the prediction accuracy of wind speed. The optimization is performed in terms of a new optimization algorithm based on dipper-throated optimization (DTO) and genetic algorithm (GA), which is referred to as (GADTO). The proposed optimization algorithm is used to optimize the bidrectional long short-term memory (BiLSTM) forecasting model parameters. To verify the effectiveness of the proposed methodology, a benchmark dataset freely available on Kaggle is employed in the conducted experiments. The dataset is first preprocessed to be prepared for further processing. In addition, feature selection is applied to select the significant features in the dataset using the binary version of the proposed GADTO algorithm. The selected features are utilized to learn the optimization algorithm to select the best configuration of the BiLSTM forecasting model. The optimized BiLSTM is used to predict the future values of the wind speed, and the resulting predictions are analyzed using a set of evaluation criteria. Moreover, a statistical test is performed to study the statistical difference of the proposed approach compared to other approaches in terms of the analysis of variance (ANOVA) and Wilcoxon signed-rank tests. The results of these tests confirmed the proposed approach’s statistical difference and its robustness in forecasting the wind speed with an average root mean square error (RMSE) of 0.00046, which outperforms the performance of the other recent methods.

Metaheuristic Optimized Ensemble Model for Classification of SMS Spam in Computer Networks
By use of electronic communication, we are able to communicate a message to the recipient. In thi... more By use of electronic communication, we are able to communicate a message to the recipient. In this digital age, a collaboration between several people is possible thanks to a variety of digital technologies. This interaction may take place in a variety of media formats, including but not limited to text, images, sound, and language. Today, a person's primary means of communication is their smart gadget, most commonly a cell phone. Spam is another side effect of our increasingly text-based modes of communication. We received a bunch of spam texts on our phones, and we know they're not from anyone we know. The vast majority of businesses nowadays use spam texts to advertise their wares, even when recipients have explicitly requested not to receive such messages. As a rule, there are many more spam emails than genuine ones. We apply text classification approaches to define short messaging service (SMS) and spam filtering in this study, which effectively categorizes messages. In this paper, we use machine learning algorithms and metaheuristic optimization to determine what percentage of incoming SMS messages are spam. This is why we used the optimized models to evaluate and contrast many classification strategies for gathering data.
Metaheuristic Optimization Review: Algorithms and Applications
Metaheuristic optimisation algorithms have become more well liked in recent years due to their su... more Metaheuristic optimisation algorithms have become more well liked in recent years due to their success in solving challenging optimisation problems. Only a few of the metaheuristic optimisation techniques covered in this work include genetic algorithms, particle swarm optimisation, simulated annealing, ant colony optimisation, and many others. This paper discusses the history, operation, and applications of each method, including applications in engineering, finance, and bioinformatics.
New Optimization Models for Sine Cosine Functions in Embedded Telecommunication Systems

Watermarking System for Medical Images Using Optimization Algorithm
One of the main methods used to provide security for medical records when exchanging these record... more One of the main methods used to provide security for medical records when exchanging these records through open networks is digital watermarking. In order to preserve the privacy of patients, this system also requires a means to secure images. In this paper, a watermarking based on discrete wavelet transform (DWT), and discrete and discrete cosine transform (DCT) in cascade provides more robustness and security. DCT divides the image into low and high-frequency regions, watermarking message can be embedded into low-frequency regions to prevent distortion of the original image. DWT splits the image into four frequency coefficients; horizontal, vertical, approximation, and detailed frequency component. The judgment factors for the strength of the watermark system are robustness, invisibility, and embedded message capacity. Invisibility means transparency of the watermark logo or data in the original or host image without any distortion. Capacity data payload means the size of the embedded image which is related to the amount of data or logo size that will be embedded in the host image. Robustness refers to the capability of the watermark to stand with the host image operations. In this paper, we propose an optimizer to trade-off between robustness, invisibility, and message capacity. Three metrics were employed to assess the results achieved by the proposed approach, namely, Peak Signal-to-Noise Ratio (PSNR), Normalized Cross Correlation (NCC), and Image Fidelity (IF). The achieved results confirmed the effectiveness and superiority of the proposed approach for real-world digital watermarking applications.
Energies, Jan 21, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Hourly predictions of direct normal irradiation using an innovative hybrid LSTM model for concentrating solar power projects in hyper-arid regions
Energy Reports, Nov 1, 2022
A material classification method based on illumination-invariant representation of spectral images
Processes, May 15, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Dynamic Voting Classifier for Risk Identification in Supply Chain 4.0
Computers, materials & continua, 2021

PLOS ONE, Feb 7, 2023
Technology for anticipating wind speed can improve the safety and stability of power networks wit... more Technology for anticipating wind speed can improve the safety and stability of power networks with heavy wind penetration. Due to the unpredictability and instability of the wind, it is challenging to accurately forecast wind power and speed. Several approaches have been developed to improve this accuracy based on processing time series data. This work proposes a method for predicting wind speed with high accuracy based on a novel weighted ensemble model. The weight values in the proposed model are optimized using an adaptive dynamic grey wolf-dipper throated optimization (ADGWDTO) algorithm. The original GWO algorithm is redesigned to emulate the dynamic group-based cooperative to address the difficulty of establishing the balance between exploration and exploitation. Quick bowing movements and a white breast, which distinguish the dipper throated birds hunting method, are employed to improve the proposed algorithm exploration capability. The proposed ADGWDTO algorithm optimizes the hyperparameters of the multi-layer perceptron (MLP), K-nearest regressor (KNR), and Long Short-Term Memory (LSTM) regression models. A dataset from Kaggle entitled Global Energy Forecasting Competition 2012 is employed to assess the proposed algorithm. The findings confirm that the proposed ADGWDTO algorithm outperforms the literature's state-of-the-art wind speed forecasting algorithms. The proposed binary ADGWDTO algorithm achieved average fitness of 0.9209 with a standard deviation fitness of 0.7432 for feature selection, and the proposed weighted optimized ensemble model (Ensemble using ADGWDTO) achieved a root mean square error of 0.0035 compared to state-of-the-art algorithms. The proposed algorithm's stability and robustness are confirmed by statistical analysis of several tests, such as one-way analysis of variance (ANOVA) and Wilcoxon's rank-sum.
Bioengineering, Dec 22, 2022
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Energies, Jan 28, 2023
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY
Actuators, Dec 26, 2022
This article is an open access article distributed under the terms and conditions of the Creative... more This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

Computers, materials & continua, 2022
Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The ba... more Metamaterial Antennas are a type of antenna that uses metamaterial to enhance performance. The bandwidth restriction associated with small antennas can be solved using metamaterial antennas. Machine learning is gaining popularity as a way to improve solutions in a range of fields. Machine learning approaches are currently a big part of current research, and they're likely to be huge in the future. The model utilized determines the accuracy of the prediction in large part. The goal of this paper is to develop an optimized ensemble model for forecasting the metamaterial antenna's bandwidth and gain. The basic models employed in the developed ensemble are Support Vector Regression (SVR), K-Nearest Regression (KNR), Multi-Layer Perceptron (MLP), Decision Trees (DT), and Random Forest (RF). The percentages of contribution of these models in the ensemble model are weighted and optimized using the dipper throated optimization (DTO) algorithm. To choose the best features from the dataset, the binary (bDTO) algorithm is exploited. The proposed ensemble model is compared to the base models and results are recorded and analyzed statistically. In addition, two other ensembles are incorporated in the conducted experiments for comparison. These ensembles are average ensemble and K-nearest neighbors (KNN)-based ensemble. The comparison is performed in terms of eleven evaluation criteria. The evaluation results confirmed the superiority of the proposed model when compared with the basic models and the other ensemble models.
Uploads
Papers by Abdelhameed Ibrahim