Rapid Generation Of Plant Protection Expert Systems
Computers in Agriculture and Natural Resources, 23-25 July 2006, Orlando Florida, 2006
1 International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, ... more 1 International Center for Agricultural Research in the Dry Areas (ICARDA), PO Box 5466, Aleppo, Syria 2 Central Laboratory for Agricultural Expert Systems (CLAES), PO Box 438, Dokki, Giza, Egypt 3 International Crop Research Institute for the Semi Arid Tropics ( ...
Uploads
Papers by Mohamed Dahab
consider the query terms frequency and proximity in the document by comparing the signals of the query terms in the spectral domain instead of the spatial domain using Discrete Wavelet Transform (DWT). The query expansion (QE) approaches are used to overcome the word-mismatch problem by adding terms to query, which have related meaning with the query. The QE approaches are divided to statistical approach Kullback-Leibler divergence (KLD) and semantic approach PWNET that uses WordNet. These approaches enhance the
performance. Based on the foregoing considerations, the objective of this research is to build an efficient QESBIRM that combines QE and proximity SBIRM by implementing the SBIRM using the DWT and KLD or P-WNET. The experiments conducted to test and evaluate the QESBIRM using Text Retrieval Conference (TREC) dataset. The result shows that the SBIRM with the KLD or P-WNET model outperform the SBIRM model in precision (P@), R-precision, Geometric Mean Average Precision (GMAP) and Mean Average Precision (MAP).
domain of automatic text summarization within the Natural Language Processing (NLP)
community.The aim of this paper is to propose a novel approach for a language independent automatic
summarization approach that combines three main approaches. The Rhetorical Structure Theory
(RST), the query processing approach, and the Network Representationapproach (NRA). RST, as a
theory of major aspect for the structure of natural text, is used to extract the semantic relation behind
the text.Query processing approachclassifies the question type and finds the answer in a way that suits
the user’s needs. The NRA is used to create a graph representing the extracted semantic relation. The
output is an answer, which not only responses to the question, but also gives the user an opportunity to
find additional information that is related to the question.We implemented the proposed approach. As a
case study, the implemented approachis applied on Arabic text in the agriculture field. The
implemented approach succeeded in summarizing extension documents according to user's query. The
approach results have been evaluated using Recall, Precision and F-score measures