MKEL: Multiple Kernel Ensemble Learning via Unified Ensemble Loss for Image Classification
ACM Transactions on Intelligent Systems and Technology
In this article, a novel ensemble model, called Multiple Kernel Ensemble Learning (MKEL), is deve... more In this article, a novel ensemble model, called Multiple Kernel Ensemble Learning (MKEL), is developed by introducing a unified ensemble loss. Different from the previous multiple kernel learning (MKL) methods, which attempt to seek a linear combination of basis kernels as a unified kernel, our MKEL model aims to find multiple solutions in corresponding Reproducing Kernel Hilbert Spaces (RKHSs) simultaneously. To achieve this goal, multiple individual kernel losses are integrated into a unified ensemble loss. Therefore, each model can co-optimize to learn its optimal parameters by minimizing a unified ensemble loss in multiple RKHSs. Furthermore, we apply our proposed ensemble loss into the deep network paradigm and take the sub-network as a kernel mapping from the original input space into a feature space, named Deep-MKEL (D-MKEL). Our D-MKEL model can utilize the diversified deep individual sub-networks into a whole unified network to improve the classification performance. With t...
Uploads
Papers by Sumet Mehta