Papers by Pramod Anantharam

Future Generation Computer Systems, 2014
Trust relationships occur naturally in many diverse contexts such as collaborative systems, e-com... more Trust relationships occur naturally in many diverse contexts such as collaborative systems, e-commerce, interpersonal interactions, social networks, and semantic sensor web. As agents providing content and services become increasingly removed from the agents that consume them, the issue of robust trust inference and update becomes critical. There is a need to find online substitutes for traditional (direct or face-to-face) cues to derive measures of trust, and create efficient and robust systems for managing trust in order to support decisionmaking. Unfortunately, there is neither a universal notion of trust that is applicable to all domains nor a clear explication of its semantics or computation in many situations. We motivate the trust problem, explain the relevant concepts, summarize research in modeling trust and gleaning trustworthiness, and discuss challenges confronting us. The goal is to provide a comprehensive broad overview of the trust landscape, with the nittygritties of a handful of approaches. We also provide details of the theoretical underpinnings and comparative analysis of Bayesian approaches to binary and multilevel trust, to automatically determine trustworthiness in a variety of reputation systems including those used in sensor networks, e-commerce, and collaborative environments. Ultimately, we need to develop expressive trust networks that can be assigned objective semantics.

Understanding speed and travel-time dynamics in response to various city related events is an imp... more Understanding speed and travel-time dynamics in response to various city related events is an important and challenging problem. Sensor data (numerical) containing average speed of vehicles passing through a road segment can be interpreted in terms of near real-time report of traffic related incidents from city authorities and social media data (textual), providing a complementary understanding of traffic dynamics. State-of-the-art research is focused on either analyzing sensor observations or citizen observations; we seek to exploit both in a synergistic manner. We demonstrate the role of domain knowledge in capturing the non-linearity of speed and travel-time dynamics by segmenting speed and travel-time observations into simpler components amenable to description using linear models such as Linear Dynamical System (LDS). Specifically, we propose Restricted Switching Linear Dynamical System (RSLDS) to model normal speed and travel time dynamics and thereby characterize anomalous dynamics. We utilize the city traffic events extracted from text to explain anomalous dynamics. We present a large scale evaluation of the proposed approach on a real-world traffic and twitter dataset collected over a year with promising results.

Cities are composed of complex systems with physical, cyber, and social components. Current works... more Cities are composed of complex systems with physical, cyber, and social components. Current works on extracting and understanding city events mainly rely on technology enabled infrastructure to observe and record events. In this work, we propose an approach to leverage citizen observations of various city systems and services such as traffic, public transport, water supply, weather, sewage, and public safety as a source of city events. We investigate the feasibility of using such textual streams for extracting city events from annotated text. We formalize the problem of annotating social streams such as microblogs as a sequence labeling problem. We present a novel training data creation process for training sequence labeling models. Our automatic training data creation process utilizes instance level domain knowledge (e.g., locations in a city, possible event terms). We compare this automated annotation process to a state-of-the-art tool that needs manually created training data and show that it has comparable performance in annotation tasks. An aggregation algorithm is then presented for event extraction from annotated text. We carry out a comprehensive evaluation of the event annotation and event extraction on a real-world dataset consisting of event reports and tweets collected over four months from San Francisco Bay Area. The evaluation results are promising and provide insights into the utility of social stream for extracting city events.
Trust relationships occur naturally in many diverse contexts such as ecommerce, interpersonal int... more Trust relationships occur naturally in many diverse contexts such as ecommerce, interpersonal interactions, social networks, sensor web, etc. As agents providing content and services become increasingly removed from the agents that consume them, the issue of robust trust inference and update become critical. Unfortunately, there is neither a universal notion of trust that is applicable to all domains nor a clear explication of its semantics or computation in many situations. In this beginner's level tutorial, we motivate the trust problem, explain the relevant concepts, summarize research in modeling trust and gleaning trustworthiness, and discuss challenges confronting us in this process.
This paper demonstrates a Semantic Web enabled system for collecting and processing sensor data w... more This paper demonstrates a Semantic Web enabled system for collecting and processing sensor data within a rescue environment. The realtime system collects heterogeneous raw sensor data from rescue robots through a wireless sensor network. The raw sensor data is converted to RDF using the Semantic Sensor Network (SSN) ontology and further processed to generate abstractions used for event detection in emergency scenarios.
In this paper, we present Twitris, a semantic Web application that facilitates browsing for news ... more In this paper, we present Twitris, a semantic Web application that facilitates browsing for news and information, using social perceptions as the fulcrum. In doing so we address challenges in large scale crawling, processing of real time information, and preserving spatiotemporal-thematic properties central to observations pertaining to realtime events. We extract metadata about events from Twitter and bring related news and Wikipedia articles to the user. In developing Twitris, we have used the DBPedia ontology.
Trust is an amorphous concept that is becoming Increasingly important in many domains, such as P2... more Trust is an amorphous concept that is becoming Increasingly important in many domains, such as P2P networks, E-commerce, social networks, and sensor networks. While we all have an intuitive notion of trust, the literature is scattered with a wide assortment of differing definitions and descriptions; often these descriptions are highly dependent on a single domain or application of interest. In addition, they often discuss orthogonal aspects of trust while continuing to use the general term “trust”. In order to make sense of the situation, we have developed an ontology of trust that integrates and relates its various aspects into a single model.
Trust and reputation are becoming increasingly important in diverse areas such as search, e-comme... more Trust and reputation are becoming increasingly important in diverse areas such as search, e-commerce, social media, semantic sensor networks, etc. We review past work and explore future research issues relevant to trust in social/sensor networks and interactions. We advocate a balanced, iterative approach to trust that marries both theory and practice. On the theoretical side, we investigate models of trust to analyze and specify the nature of trust and trust computation. On the practical side, we propose to uncover aspects that provide a basis for trust formation and techniques to extract trust information from concrete social/sensor networks and interactions. We expect the development of formal models of trust and techniques to glean trust information from social media and sensor web to be fundamental enablers for applying semantic web technologies to trust management.

Provenance, from the French word “provenir”, describes the lineage or history of a data entity. P... more Provenance, from the French word “provenir”, describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.
Uploads
Papers by Pramod Anantharam