Journal Articles by Madeline Steele

Plant foods in the Upper Palaeolithic at Dolní Vĕstonice? Parenchyma redux
Antiquity, 2013
The classic image of Upper Palaeolithic hunter-gatherers in Europe envisages them hunting large m... more The classic image of Upper Palaeolithic hunter-gatherers in Europe envisages them hunting large mammals in largely treeless landscapes. That is partly due to the nature of the surviving archaeological evidence, and the poor preservation of plant remains at such ancient sites. As this study illustrates, however, the potential of Upper Palaeolithic sites to yield macrofossil remains of plants gathered and processed by human groups has been underestimated. Large scale flotation of charred deposits from hearths such as that reported here at Dolní Vĕstonice II not only provides insight into the variety of flora that may have been locally available, but also suggests that some of it was being processed and consumed as food. The ability to exploit plant foods may have been a vital component in the successful colonisation of these cold European habitats.
Papers by Madeline Steele
Spatial and Temporal Patterns in the Influence of Land Use on Water Quality in Five Portland Area Creeks Representing Differing Levels of Urbanization
Effects of Climate Change on Water Quality in the Yaquina Estuary, Oregon

Potential Climate-Induced Runoff Changes and Associated Uncertainty in Four Pacific Northwest Estuaries
USGS professional paper
As part of a larger investigation into potential effects of climate change on estuarine habitats ... more As part of a larger investigation into potential effects of climate change on estuarine habitats in the Pacific Northwest, we estimated changes in freshwater inputs into four estuaries: Coquille River estuary, South Slough of Coos Bay, and Yaquina Bay in Oregon, and Willapa Bay in Washington. We used the U.S. Geological Survey’s Precipitation Runoff Modeling System (PRMS) to model watershed hydrological processes under current and future climatic conditions. This model allowed us to explore possible shifts in coastal hydrologic regimes at a range of spatial scales. All modeled watersheds are located in rainfall-dominated coastal areas with relatively insignificant base flow inputs, and their areas vary from 74.3 to 2,747.6 square kilometers. The watersheds also vary in mean elevation, ranging from 147 meters in the Willapa to 1,179 meters in the Coquille. The latitudes of watershed centroids range from 43.037 degrees north latitude in the Coquille River estuary to 46.629 degrees nor...
Plant foods in the Upper Palaeolithic at Dolní Vӗstonice? Parenchyma redux
Antiquity, 2013

Geographical Analysis, 2012
Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation... more Summer streamflow is a vital water resource for municipal and domestic water supplies, irrigation, salmonid habitat, recreation, and water-related ecosystem services in the Pacific Northwest (PNW) in the United States. This study detects significant negative trends in September absolute streamflow in a majority of 68 stream-gauging stations located on unregulated streams in the PNW from 1958 to 2008. The proportion of March streamflow to annual streamflow increases in most stations over 1,000 m elevation, with a baseflow index of less than 50, while absolute March streamflow does not increase in most stations. The declining trends of September absolute streamflow are strongly associated with seven-day low flow, January-March maximum temperature trends, and the size of the basin (19-7,260 km 2 ), while the increasing trends of the fraction of March streamflow are associated with elevation, April 1 snow water equivalent, March precipitation, center timing of streamflow, and October-December minimum temperature trends. Compared with ordinary least squares (OLS) estimated regression models, spatial error regression and geographically weighted regression (GWR) models effectively remove spatial autocorrelation in residuals. The GWR model results show spatial gradients of local R 2 values with consistently higher local R 2 values in the northern Cascades. This finding illustrates that different hydrologic landscape factors, such as geology and seasonal distribution of precipitation, also influence streamflow trends in the PNW. In addition, our spatial analysis model results show that considering various geographic factors help clarify the dynamics of streamflow trends over a large geographical area, supporting a spatial analysis approach over aspatial OLS-estimated regression models for predicting streamflow trends. Results indicate that transitional rain-snow surface water-dominated basins are likely to have reduced summer streamflow under warming scenarios. Consequently, a better understanding of the relationships among summer streamflow, precipitation, snowmelt, elevation, and geology can help water managers predict the response of regional summer streamflow to global warming.
Uploads
Journal Articles by Madeline Steele
Papers by Madeline Steele